Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit atomarer Präzision: Technologien für die übernächste Chipgeneration

24.05.2016

Im Projekt »Beyond EUV« entwickeln die Fraunhofer-Institute für Lasertechnik ILT in Aachen und für angewandte Optik und Feinmechanik IOF in Jena wesentliche Technologien zur Fertigung einer neuen Generation von Mikrochips mit EUV-Strahlung bei 6,7 nm. Die Strukturen sind dann kaum noch dicker als einzelne Atome und ermöglichen besonders hoch integrierte Schaltkreise zum Beispiel für Wearables oder gedankengesteuerte Prothesen.

Gordon Moore formulierte 1965 das später nach ihm benannte Gesetz, wonach sich alle ein bis zwei Jahre die Komplexität integrierter Schaltungen verdoppelt. Er galt damals als Visionär und Vordenker. Heute sind wir über 50 Jahre weiter und sehen, dass die Integrationsdichte elektronischer Schaltkreise immer noch weiter wächst.


Bild 1: Das Foto zeigt ein entladungsbasiertes Plasma.

©Fraunhofer ILT, Aachen


Bild 2: Am Fraunhofer IOF in Jena werden Spiegelschichten mit atomarer Präzision hergestellt.

© Fraunhofer IOF, Jena

Inzwischen können wir ganze Bibliotheken auf einem Chip im Smartphone speichern. Möglich wurde das vor allem durch revolutionäre Fortschritte in den optischen Technologien und in der Materialwissenschaft. Und obwohl physikalische Grenzen sichtbar werden, ist die Entwicklung noch nicht am Ende: Wissenschaftler an Fraunhofer-Instituten in Jena und Aachen arbeiten an der nächsten Technologiestufe für noch kleinere Strukturen.

Neue Targetmaterialien für die 6.7 nm-Strahlquelle

Ein entscheidender Parameter für die lithografische Erzeugung immer kleinerer Strukturen ist die verwendete Lichtwellenlänge. In den siebziger Jahren reichte das UV-Licht einer Quecksilberdampflampe, in den Neunzigern kamen Excimerlaser bei 193 nm dazu.

Mit diesen Strahlquellen und ausgefeilten Methoden der optischen Lithografie werden heute Strukturgrößen von bis zu 14 nm industriell gefertigt.

In den letzten 10 Jahren wurde mit der EUV-Lithografie eine völlig neue Technik entwickelt, die bei einer Wellenlänge von 13,5 nm arbeitet. Dafür wird ein Zinntröpfchen mit einem Hochleistungslaser beschossen, die entstehende Strahlung im Extrem-UV (EUV) soll in den nächsten Jahren Strukturgrößen von 10 nm und darunter ermöglichen.

Wissenschaftler am Fraunhofer ILT haben an der EUV-Technologie maßgeblich mitgearbeitet und konzentrieren sich jetzt auf den nächsten Schritt: Die Technologie für Strahlung von etwa 6,7 nm Wellenlänge. Statt mit Zinn arbeiten sie mit Targets aus Gadolinium- oder Terbiumlegierungen, die entsprechend kürzere Wellenlängen ermöglichen.

Zur Charakterisierung der Strahlquelle wurde gemeinsam von Teams beider Fraunhofer-Institute ein neues Optiksystem entwickelt. Damit lassen sich Parameter wie die Lichtleistung räumlich und spektral hochaufgelöst messen.

Die Strahlquelle produziert inzwischen genügend Leistung, um damit Versuche an neuen Spiegelschichten oder lichtempfindlichen Lacken (Resists) zu unternehmen. Für die nötige Leistungsskalierung wird sie kontinuierlich weiterentwickelt.

Spiegelschichten mit atomarer Präzision

Im Unterschied zur klassischen optischen Lithografie arbeitet die EUV-Lithografie ausschließlich mit reflektiver Optik, wobei die Spiegel extrem hohen Anforderungen gerecht werden müssen. Die Dicke der Spiegelschichten muss inzwischen im Bereich von 10 Pikometern stimmen. Das ist weniger als ein Atomdurchmesser.

Die Erzeugung der EUV-Strahlung ist aufwändig und teuer, entsprechend zählt jedes Prozent an Reflektivität. Bei den Spiegeln für 13 nm konnte mit Silizium- und Molybdänschichtsystemen etwa 65% Reflektivität erreicht werden. Für 6,7 nm haben die Experten vom Fraunhofer IOF in Jena spezielle Systeme aus Lanthan- und Borverbindungen entwickelt. Und auch hier kämpfen sie darum, die theoretische Grenze von etwa 70% zu erreichen.

Anwendungen in vielen Bereichen

Schon heute gibt es mehr Mobiltelefone als Menschen auf der Erde, möglich wurde das unter anderem durch die enormen Fortschritte der Mikrolithografie. Sie bleibt auch für die nächsten Jahre und für neue Themen wie Industrie 4.0 oder das Internet der Dinge von größter Bedeutung.

Deshalb arbeiten die Experten der Fraunhofer-Institute für Angewandte Optik und Feinmechanik IOF und für Lasertechnik ILT seit Anfang 2014 daran, die Grundlagen für Lithografieverfahren bei noch kürzeren Wellenlängen zu erarbeiten. Begleitet durch Industriepartner von Carl Zeiss SMT und ASML arbeiten Sie im Projekt »Beyond EUV« noch bis Ende 2016 an der Entwicklung von wesentlichen Komponenten für die Technologie bei 6,7 nm.

Mit den neuen Lithografietechnologien werden Strukturen mit der Dicke von wenigen Atomen möglich. Für Schaltkreise aus solchen Strukturen gibt es schon heute viele Ideen: Neben noch höheren Speicherkapazitäten für Cloudanwendungen und Big-Data-Prozesse könnten sie auch für gedankengesteuerte Prothesen oder eine stärker personalisierte Medizin genutzt werden.

Ansprechpartner

Dr. rer. nat Klaus Bergmann
Gruppenleiter EUV-Technik
Telefon +49 241 8906-302
klaus.bergmann@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT, Aachen

Prof. Dr. Norbert Kaiser
Abteilungsleiter Optische Schichten
Telefon +49 3641 807-321
norbert.kaiser@iof.fraunhofer.de
Fraunhofer-Institut für angewandte Optik
und Feinmechanik IOF, Jena

Weitere Informationen:

http://www.ilt.fraunhofer.de/
http://www.iof.fraunhofer.de/

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Jade Hochschule entwickelt alternative Steuerungselemente für die Automobil- und Luftfahrtbranche
27.03.2020 | Jade Hochschule - Wilhelmshaven/Oldenburg/Elsfleth

nachricht Sensoren aus dem 3D-Drucker könnten Atemtest für Diabetes ermöglichen
26.03.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blockierung des Eisentransports könnte Tuberkulose stoppen

Tuberkulose-Bakterien brauchen Eisen zum Überleben. Wird der Eisentransport in den Bakterien gestoppt, so kann sich der Tuberkulose-Erreger nicht weiter vermehren. Nun haben Forscher der Universität Zürich die Struktur des Transportproteins ermittelt, das für die Eisenzufuhr zuständig ist. Dies eröffnet Möglichkeiten zur Entwicklung neuer Medikamente.

Einer der verheerendsten Erreger, der sich im Inneren menschlicher Zellen vermehren kann, ist Mycobacterium tuberculosis – der Bazillus, der Tuberkulose...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Corona-Pandemie: Medizinischer Vollgesichtsschutz aus dem 3D-Drucker

In Vorbereitung auf zu erwartende COVID-19-Patienten wappnet sich das Universitätsklinikum Augsburg mit der Beschaffung von persönlicher Schutzausrüstung für das medizinische Personal. Ein Vollgesichtsschutz entfaltet dabei in manchen Situationen eine bessere Schutzwirkung als eine einfache Schutzbrille, doch genau dieser ist im Moment schwer zu beschaffen. Abhilfe schafft eine Kooperation mit dem Institut für Materials Resource Management (MRM) der Universität Augsburg, das seine Kompetenz und Ausstattung im Bereich des 3D-Drucks einbringt, um diesen Engpass zu beheben.

Das Coronavirus SARS-CoV-2 wird nach heutigem Wissensstand maßgeblich durch Tröpfcheninfektion übertragen. Dabei sind neben Mund und Nase vor allem auch die...

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Studie mit bispezifischem Antikörper liefert beeindruckende Behandlungserfolge bei Multiplem Myelom

01.04.2020 | Medizin Gesundheit

Unternehmenswissen - Wie gelingt der Umstieg von Präsenz auf Online?

01.04.2020 | Seminare Workshops

SmartKai – „Einparkhilfe“ zur Vermeidung von Schäden an Schiffen und Hafeninfrastruktur

01.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics