Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Für noch mehr Sonne im Tank

27.01.2010
Professur Technische Thermodynamik der TU Chemnitz optimiert gemeinsam mit dem sächsischen Unternehmen Haase GFK-Technik GmbH Solarspeicher aus Kunststoff

Mehr als elf Millionen Quadratmeter Kollektorfläche von Solarthermieanlagen waren 2008 nach Angaben des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit in Deutschland installiert - mehr als 210.000 Anlagen seien 2008 neu errichtet worden, doppelt so viele wie noch im Jahr zuvor.

Solarthermieanlagen können zur Erwärmung von Trinkwasser sowie für die Produktion von heißem Wasser für Heizungsanlagen genutzt werden. "Die Speicher werden heute immer größer, außerdem sind für den vermehrten Einsatz in Heizungssystemen höhere Temperaturen nötig", sagt Dr. Thorsten Urbaneck, Bereichsleiter "Thermische Energiespeicher" an der Professur Technische Thermodynamik der TU Chemnitz, und ergänzt: "Zudem sollen längere Speicherperioden von bis zu drei Monaten erreicht werden, weshalb es wichtig ist, die Verluste der Speicher zu minimieren."

Gemeinsam mit dem mittelständischen Unternehmen Haase GFK-Technik GmbH aus Sachsen optimieren die Chemnitzer Wissenschaftler die Speichertechnik und passen die Produktpalette des Unternehmens an. Grundlage dafür sind Forschungsergebnisse, die die Professur Technische Thermodynamik der TU Chemnitz gemeinsam mit Wissenschaftlern der TU Ilmenau in einem 2008 abgeschlossenen Projekt erzielt haben. "Verschiedene Mittelständler haben Interesse an unseren Ergebnissen bekundet", berichtet Urbaneck. Die Firma Haase GFK-Technik GmbH aus Großröhrsdorf bei Dresden ist spezialisiert auf Tanks, Anlagen und Formteile aus glasfaserverstärktem Kunststoff (GFK). GFK ist ein Verbundwerkstoff aus Glas und Harz, der den bisher für Speicher üblichen Stahl ersetzt und damit unter anderem die äußeren Verluste sowie die Kosten der Anlagen senkt.

Im Mittelpunkt der Arbeit der TU-Wissenschaftler steht die Be- und Entladung der Speicher. "Die Schichtung des Wassers im Speicher nach Temperatur ist wichtig", sagt Urbaneck und erklärt: "Ein Speicher mit 40 Grad warmem Wasser hat zwar die selbe Energie, wie ein Speicher, in dem je zur Hälfte 30 und 50 Grad warmes Wasser geschichtet ist. Aber gerade für Heizungen braucht man höhere Temperaturen. Die Energie ist mehr wert, wenn höhere und niedrigere Temperaturschichten zur Verfügung stehen, als wenn der Wassertank eine mittlere Temperatur hat." Deshalb soll ausgenutzt werden, dass die Sonne mittags intensiver strahlt als morgens und abends und so das Wasser dann stärker erhitzt. Das Be- und Entladesystem, an dem die Chemnitzer gemeinsam mit der Firma Haase derzeit arbeiten, basiert auf dem Dichteunterschied zwischen kälterem und wärmerem Wasser und ist preiswerter sowie robuster als bisher existierende Lösungen, die beispielsweise mit Reglern arbeiten.

Derzeit sind mehrere optimierte Produkte der Firma Haase im Teststand der TU Chemnitz im Probebetrieb. Das Projekt, das Dr. Thorsten Urbaneck und Rolf Lohse an der Professur Technische Thermodynamik von Prof. Dr. Bernd Platzer bearbeiten, wird seit Juni 2009 bis Mai 2010 vom Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit gefördert (Förderkennzeichen 0325957A).

Weitere Informationen unter http://www.ichbin2.de und bei Dr. Thorsten Urbaneck, Telefon 0371 531-32463, E-Mail thorsten.urbaneck@mb.tu-chemnitz.de.

Katharina Thehos | Technische Universität Chemnitz
Weitere Informationen:
http://www.ichbin2.de
http://www.tu-chemnitz.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Fraunhofer IZM setzt das E-Auto auf die Überholspur
11.10.2019 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht TU Ilmenau nimmt deutschlandweit einzigartigen Echtzeit-Simulator für Energiesysteme in Betrieb
10.10.2019 | Technische Universität Ilmenau

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics