Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Maßgeschneiderte Membranen für die Umwelt

30.11.2016

Durch das Verbrennen fossiler Energieträger in Kohle- und Gaskraftwerken entstehen umweltschädliche Abgase. Jülicher Forscher arbeiten an Möglichkeiten, diese Abgase nicht nur zu reduzieren, sondern auch nutzbar zu machen. Sie entwickeln keramische Membranen, mit denen sich aus Kohlenstoffdioxid und Wasserdampf reiner Wasserstoff abtrennen lässt, der dann als sauberer Energieträger – zum Beispiel in Brennstoffzellen – verwendet werden kann. Nun konnten sie die Leistungsfähigkeit dieser Membranen auf einen bisher unerreichten Wert steigern. Die Ergebnisse ihrer Forschung veröffentlichten sie in der Fachzeitschrift Scientific Reports (DOI: 10.1038/srep34773).

In technischen Systemen lassen sich mit Membranen Gase trennen – effizienter und kostengünstiger als mit etablierten Verfahren. Membransysteme ermöglichen so die Abtrennung von schädlichen Klimagasen mit vergleichsweise geringen Verlusten. Gleichzeitig lässt sich so hochreiner Wasserstoff für saubere Energieerzeugung und -speicherung gewinnen. Dies macht keramische Membranen zu einer Schlüsseltechnologie der Energiewende.


Transmissionselektronenmikroskop-Aufnahme der Membran, erstellt im Ernst Ruska-Centrum. Die beiden Phasen für Protonen- und Elektronenleitung sind farblich gekennzeichnet.

Forschungszentrum Jülich

Eine Möglichkeit, den Wasserstoff aus Gasgemischen abzutrennen, ist eine sogenannte Zweiphasen-Membran. "Diese besteht aus zwei keramischen Materialien. Die einzelnen Körnchen haben nur eine Größe von einem tausendstel Millimeter und weisen einerseits eine ionische und anderseits eine elektronische Leitfähigkeit auf", erklärt Dr. Mariya Ivanova vom Jülicher Institut für Energie- und Klimaforschung.

Die Bestandteile des Wasserstoffs, Protonen und Elektronen, werden so einzeln durch die Membran transportiert. Auf der anderen Seite setzen sie sich zu hochreinem Wasserstoff zusammen. Möglich ist dies durch maßgeschneiderte Fehlstellen im Kristallgitter der Keramiken, die durch Protonen besetzt werden. Diese Protonen, angetrieben durch Druckunterschiede und Temperatur, werden durch das Material der Membran geleitet.

"Sie docken an einem Sauerstoff-Ion an, und springen in Richtung des geringeren Drucks zum nächsten Sauerstoff-Ion, von Fehlstelle zu Fehlstelle, bis sie auf der anderen Seite wieder zu elementarem Wasserstoff formiert werden", sagt Mariya Ivanova. "Die Elektronen werden durch den zweiten Bestandteil der Keramik transportiert und sorgen für einen Ladungsausgleich."

Doch das Verfahren weist noch einige entscheidende Schwächen auf. Für die Wasserstoffabtrennung sind hohe Temperaturen notwendig, was sie energieaufwändig macht. Außerdem sind die bisher untersuchten Membranen in einer kohlenstoffhaltigen Umgebung nicht stabil und werden unbrauchbar. Auch die Rate des Wasserstoffdurchflusses ist noch nicht hoch genug.

Doch die Forscher um Mariya Ivanova haben wichtige Fortschritte gemacht: Durch das gezielte Einbringen von Fremdatomen in das Kristallgitter ist ihre Membran stabiler und bei niedrigeren Temperaturen einsetzbar. Der größte Erfolg ist jedoch der gesteigerte Wasserstoffdurchfluss. "Er ist beinahe doppelt so hoch wie bei allen bisher dokumentierten Fällen", freut sich Ivanova.

Die Jülicher Membranen für die Messungen sind nur so groß wie ein 10-Cent-Stück, und einen halben Millimeter dick. "An einen industriellen Einsatz ist noch nicht zu denken", erklärt Ivanova. "Wir forschen weiter, suchen nach dem geeigneten Material, mit großer Durchflussrate und Stabilität und geringen Kosten. Der nächste Schritt ist danach die Vergrößerung der Komponentengröße um einen wirtschaftlichen Einsatz zu gewährleisten." Die Forscher wollen zunächst eine Fläche zehn mal zehn Quadratzentimeter erreichen.
Originalpublikation:

"Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ at intermediate temperatures" by Mariya E. Ivanova, Sonia Escolástico, Maria Balaguer, Justinas Palisaitis, Yoo Jung Sohn, Wilhelm A. Meulenberg, Olivier Guillon, Joachim Mayer & Jose M. Serra, DOI: 10.1038/srep34773

Ansprechpartner:

Dr. Eng. Mariya E. Ivanova
Teamleiterin Wasserstoffpermeable Membranen
Telefon: 02461 61-5194
E-Mail: m.ivanova@fz-juelich.de

Prof. Dr. Olivier Guillon
Direktor des Instituts für Energie- und Klimaforschung (IEK-1): Werkstoffsynthese und Herstellungsverfahren
Telefon: 02461 61-5181
E-Mail: o.guillon@fz-juelich.de

Pressekontakt:

Dr. Regine Panknin
Unternehmenskommunikation
Telefon: 02461 61-9054
E-Mail: r.panknin@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/iek/iek-1/DE/Home/home_node.html Institut für Energie- und Klimaforschung: Werkstoffsynthese und Herstellungsverfahren (IEK-1)
http://www.fz-juelich.de/iek/iek-1/DE/Forschung/Gastrennmembrane/_node.html Forschungsfeld Gastrennmembranen am IEK-1

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forscher bringen E-Bikes auf Touren
20.11.2018 | Karlsruher Institut für Technologie

nachricht Mit Brennstoffzellen zur E-Mobilität
20.11.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics