Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Längere Akku-Laufzeit: Lithium-Ionen-Batterien auf nächste Leistungsstufe gehoben

13.12.2018

Herkömmliche Lithium-Ionen-Akkus, wie sie in Smartphones und Notebooks zum Einsatz kommen, stoßen zunehmend an Leistungsgrenzen. Freddy Kleitz von der Fakultät für Chemie der Universität Wien hat mit internationalen WissenschafterInnen ein neues nanostrukturiertes Material für die Anode von Lithium-Ionen-Akkus entwickelt, das den Batterien mehr Leistung und Lebensdauer bringt. Das Material auf Basis eines halbporösen Mischmetalloxids in Kombination mit Graphen könnte einen Ansatz bieten, um Batterien in Großgeräten wie Elektro- oder Hybrid-Fahrzeugen besser nutzen zu können. Die Arbeit wird aktuell als Titelgeschichte der aktuellen Ausgabe von "Advanced Energy Materials" veröffentlicht.

Eine hohe Energiedichte, eine hohe Anzahl an Ladezyklen und keinen Memory-Effekt: Lithium-Ionen-Akkus sind die am weitesten verbreiteten Energiespeicher für mobile Geräte sowie Hoffnungsträger für die Elektromobilität.


HRSEM-Bild eines 3D/2D-CuO-NIO Graphen-Nanokomposits als aktives Anodenmaterial.

© Freddy Kleitz/Universität Wien und Claudio Gerbaldi/Politecnico di Torino


Materialwissenschafter Freddy Kleitz von der Fakultät für Chemie der Universität Wien.

© Universität Wien/Barbara Mair

Die Forschung sucht nach neuen Typen von aktivem Eletrodenmaterial, um die Batterien noch leistungsfähiger, langlebiger und damit auch besser nutzbar für Großgeräte zu machen.

"Nanostrukturiertes Material für Lithium-Ionen-Akkus kann hier einen erfolgreichen Weg vorgeben", sagt Freddy Kleitz vom Institut für Anorganische Chemie, der gemeinsam mit Claudio Gerbaldi, Leiter der Gruppe für Angewandte Material- und Elektrochemie am Politecnico di Torino (Italien), Erstautor der Studie ist.

Die von den zwei Forschern und ihren Teams entwickelte neue nanostrukturierte 2D/3D-Verbindung aus Mischmetalloxiden und Graphen steigerte deutlich die elektrochemische Leistung der Akkus:

"Die Batteriekapazität war mit bis zu über 3.000 reversiblen Ladezyklen, sogar bei sehr hohen Strombelastungen von bis zu 1.280 Milliampere, bespiellos", so Institutsvorstand Kleitz. Heutige Lithium-Ionen-Akkus verlieren nach etwa 1.000 Ladezyklen an Leistungsfähigkeit.

Neue Rezeptur

Die Anode handelsüblicher Lithium-Ionen-Akkus besteht häufig aus einem Kohlenstoff-Material wie Graphit. "Metalloxide weisen eine höhere Batteriekapazität als Graphit auf, sind aber eher instabil und wenig leitfähig", so Kleitz. Die ForscherInnen haben einen Weg gefunden, die positiven Eigenschaften beider Stoffe in einer neuartigen Verbindung bestmöglich zu nutzen.

Sie haben eine neue Familie für aktives Elektrodenmaterial aus halbdurchlässigen Mischmetalloxiden, bestehend aus Kupfer und Nickel, in Kombination mit dem elektrisch leitfähigen und stabilisierend wirkenden Graphen entwickelt. Das Material weist im Vergleich zu den meisten bereits bekannten Metalloxid-Nanostrukturen und Verbundwerkstoffen überlegene Eigenschaften auf.

Um das Mischmetall mit Anteilen von Kupfer und Nickel kontrolliert und homogen erstellen zu können, entwickelten sie eine neue Kochprozedur für die Metalle.

Unter Einsatz des Nanocasting-Verfahrens – einer Methode zur Herstellung von mesoporöser Materialien – schuf das Team anschließend geordnete nanoporöse Mischmetall-Oxid-Kügelchen, die aufgrund ihres weitflächigen Netzwerkes an Poren eine sehr hohe aktive Reaktionsfläche für den Austausch mit den Lithium-Ionen aus dem Elektrolyt der Batterie aufweisen.

Über ein anschließendes Sprühtrockenverfahren werden die Mischmetalloxid-Partikel mit hauchdünnen 2D-Graphenschichten ummantelt und von diesen durchdrungen.

Einfaches und effizientes Design

Die Verwendung von Lithium-Ionen-Akkus für die Elektromobilität gilt aus Umweltsicht, z.B. aufgrund ihrer rohstoffintensiven Produktion, als eher problematisch. Kleine Akkus, die möglichst viel Energie speichern können, lange halten und nicht zu kostenintensiv in ihrer Herstellung sind, könnten ihren Einsatz in Großgeräten vorantreiben.

"Im Vergleich zu den bestehenden Ansätzen ist unsere innovative Design-Strategie für leistungsfähiges und langlebiges Anodenmaterial einfach und effizient. Es handelt sich um einen wasserbasierten Prozess und ist von daher umweltfreundlich und bereit zur Anwendung auf industrieller Ebene", so die Studienautoren.

Publikation in Advanced Energy Materials

Spray‐Dried Mesoporous Mixed Cu‐Ni Oxide@Graphene Nanocomposite Microspheres for High Power and Durable Li‐Ion Battery Anodes. Louis Lefrançois Perreault Francesca Colò Giuseppina Meligrana Kyoungsoo Kim Sonia Fiorilli Federico Bella Jijeesh R. Nair Chiara Vitale‐Brovarone Justyna Florek Freddy Kleitz Claudio Gerbaldi. In Advanced Energy Materials
DOI: 10.1002/aenm.201802438

Dieser Artikel wurde als Open-Access-Publikation veröffentlicht und ist unter folgendem Link abrufbar:
https://onlinelibrary.wiley.com/doi/10.1002/aenm.201802438

Wissenschaftliche Ansprechpartner:

Univ.-Prof. Dr. Freddy Kleitz
Institut für Anorganische Chemie - funktionelle Materialien
Universität Wien
1010 - Wien, 1090 Wien - Währinger Straße 42
+43 1 4277 529 02
freddy.kleitz@univie.ac.at

Originalpublikation:

https://onlinelibrary.wiley.com/doi/10.1002/aenm.201802438

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forscher der TU Dresden entwickeln intelligente Therapie-Geräte für Skoliosebehandlung
14.06.2019 | Technische Universität Dresden

nachricht CO2-neutraler Treibstoff aus Luft und Sonnenlicht
13.06.2019 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Saubere Lunge dank Laserprozessabsaugung

18.06.2019 | Maschinenbau

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungsnachrichten

Ionenkanal mit Türsteher: Calcium-Ionen blockieren Kanalöffnung in Abhängigkeit vom pH-Wert

18.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics