Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Küstennahe Wellen stark genug für Kraftwerke

12.05.2010
Forscher berechnet Nutzbarkeit von Meereswellen neu

Seit Jahren gehen Konstrukteure von Wellenkraftwerken davon aus, dass die größte Wellenenergie zwischen zwei und zehn Kilometer vor der Küste vorherrscht. Diese Zone lag damit im Fokus der Experten. Nun hat Matthew Folley von der Queens University in Belfast entdeckt, dass die Wellen, die zwischen 500 Meter und zwei Kilometer vor der Küste 80 bis 90 Prozent der nutzbaren Energie enthalten.

"Offshore-Wellen haben eine nutzbare Leistungsdichte von 18,5 Kilowatt pro Meterbreite, verglichen mit rund 16,5 Kilowatt von küstennahen Wellen", so Folley, der als Senior-Forscher am Environmental Engineering Research Centre tätig ist. Aufgewogen werde dies allerdings durch den größeren Aufwand für die Instandhaltung sowie dem Service bei Offshore-Anlagen.

Überschätzte Wellenkraft

"Die standardisierten Berechnungen überschätzen die Nutzbarkeit von Offshore-Wellen aus zwei Gründen", erklärt Folley. "Der eine Grund sind Wellen, bei schwerer See, die die durchschnittliche Leistung nach oben heben. Und das obwohl solche Wellenkraftwerke gerade bei schweren Stürmen automatisch in einen Selbstschutzmodus schalten."

Der zweite Grund sei die durchsetzbare Richtung der Offshore-Wellen. "Es ist in der Tat klar, dass die Wellen im seichteren Wasser brechen. Das geschieht Offshore natürlich nicht", so Folley. Umgekehrt komme im tieferen Wasser die Wellenbewegungen aus allen möglichen Richtungen, was wiederum die Ausrichtung der Turbine schwierig macht.

Experte stimmt Ergebnissen zu

"Die Berechnungen von Folley sind tatsächlich überzeugend", meint Ian Bryden, Professor für Technical Engineering an der Edinburgh University, gegenüber pressetext. Konkret gehe es um die Frage, ob Wellenkraftwerke in 50 oder in zehn Metern Wassertiefe mehr Energieausbeute bringen. "Es ist natürlich klar, dass durch das Brechen der Wellen der Energieoutput geringer wird", meint der Experte.

"Was aber tatsächlich erstaunlich ist, ist die Tatsache, dass die Differenz zwischen den Wellen bei 50 Metern Wassertiefe und jenen bei zehn Metern Tiefe weit geringer ist, als bisher angenommen", so Bryden. "Viele Entwickler haben sich jedoch in der Zwischenzeit auf Offshore-Anlagen eingeschworen und werden ihre Pläne wohl kaum ändern."

Einige der neuen Designs sind allerdings so ausgerichtet, dass sie direkt an der Küstenlinie appliziert werden. Ein wesentlicher Unterschied liege auch in der Nutzbarkeit der Wellenenergie generell. Während bei den Offshore-Wellen die größte Energie in der Auf- und Abbewegung des Wassers liegt, liegt bei den Wellen in Küstennähe die größte Energie in der Vor- und Rückwärtsbewegung des Wassers.

Wolfgang Weitlaner | pressetext.austria
Weitere Informationen:
http://www.qub.ac.uk
http://www.see.ed.ac.uk

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Fraunhofer IZM setzt das E-Auto auf die Überholspur
11.10.2019 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht TU Ilmenau nimmt deutschlandweit einzigartigen Echtzeit-Simulator für Energiesysteme in Betrieb
10.10.2019 | Technische Universität Ilmenau

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

10. Weltkonferenz der Ecosystem Services Partnership an der Leibniz Universität Hannover

14.10.2019 | Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Technologiemodul senkt Ausschussrate von Mikrolinsen auf ein Minimum

14.10.2019 | Informationstechnologie

Diagnostik für alle

14.10.2019 | Biowissenschaften Chemie

Bayreuther Forscher entdecken stabiles hochenergetisches Material

14.10.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics