Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Ahornsamen aus der Rakete

05.03.2018

Das Space Team der TU Wien startet gemeinsam mit der Universität Würzburg ein ambitioniertes Projekt: Aus einer Rakete sollen Messgeräte abgeworfen werden, die ohne Fallschirm zur Erde zurückkehren.

Es ist eine gewagte Idee, und niemand weiß genau, ob sie funktionieren wird: Mit einer Rakete sollen röhrenförmige Messgeräte in eine Höhe von 75 Kilometern transportiert werden und dann ganz von selbst unversehrt zur Erde zurückkehren. Wenn sich diese Technologie bewährt, könnte sie in Zukunft ein interessantes neues Werkzeug für die meteorologische Forschung werden.


Das Messgerät, das aus 75 km Höhe seinen Weg zum Boden zurück finden soll

TU Wien

Das Space Team der TU Wien machte in den letzten Jahren mehrfach mit erfolgreichen Raketenstarts und Satellitenprojekten auf sich aufmerksam. Nun schloss sich der Studierenden-Verein der TU Wien mit einem Studierenden-Team der Universität Würzburg zusammen, um die Idee von den autonom zum Boden zurückkehrenden Weltraum-Sonden umzusetzen. „Projekt Daedalus“ heißt das Projekt, das nun im März im Rahmen des internationalen REXUS-Programms zur Förderung studentischer Weltraum-Initiativen realisiert werden soll.

75 Kilometer Höhe

„REXUS/BEXUS“ ist eine Kooperation des Deutschen Zentrums für Luft- und Raumfahrt mit dem Swedish National Space Board und der ESA. Jedes Jahr werden im Rahmen von „REXUS“ in Schweden zwei Raketen gestartet, die von Studierenden entwickelte Instrumente und Experimente in eine Höhe bis etwa 80 Kilometern transportiert. Erstmals ist nun beim bevorstehenden Raketenstart im März auch das TU Wien Space Team mit dabei.

„Das Ziel war, ein Gerät zu entwickeln, mit dem man günstig und einfach meteorologische Daten sammeln kann“, sagt Sebastian Seisl vom TU Wien Space Team. Die Höhe von etwa 75 Kilometern, die man mit den REXUS-Raketen erreicht, ist besonders interessant: Für Wetterballons, die höchstens auf 30 bis 40 Kilometer aufsteigen können, ist das bereits zu hoch, und mit Satelliten lässt sich dieser Bereich der Atmosphäre nur schlecht erfassen.

Die Grundidee für das neuartige Messgerät erinnert an Ahornsamen, die durch ihre langen Flügel ganz langsam und sanft zu Boden sinken. Die röhrenförmigen Sonden des Projektes Daedalus sind ebenfalls mit Flügeln ausgestattet. Ein speziell entwickelter Auswurfmechanismus soll drei dieser Sonden in 80 km Höhe aus der Rakete schleudern, wo ihre Flügel ausklappen und dafür sorgen, dass die Geräte möglichst langsam und unbeschadet zur Erde zurückkehren. GPS-Module sollen dann den Aufenthaltsort melden, sodass die Geräte möglichst leicht wiedergefunden werden können.

Während des Falls werden einige wichtige Daten gemessen – etwa die Beschleunigung, die Temperatur und der Luftdruck. „Unser Hauptaugenmerk liegt aber diesmal darin, zu zeigen, dass die Methode grundsätzlich funktioniert. Mit welchen zusätzlichen Messsensoren man die Geräte ausstattet, spielt technisch eigentlich keine so große Rolle“, meint Christoph Fröhlich, Präsident des Space Teams.

Der österreichische Anteil dieses Projekts wird neben privaten Sponsoren und dem Institut für Automatisierungs- und Regelungstechnik (ACIN) auch großzügig von der österreichischen Forschungsförderungsgesellschaft (FFG) gefördert. "Als Institut an der TU Wien freut es uns besonders, die Studierenden des Space Teams bei Ihren Vorhaben und der Arbeit an diesen anspruchsvollen Projekten zu unterstützen", so Prof. Georg Schitter vom ACIN.

Jahrelange Flug-Erfahrung im TU Wien Space Team

Das Space Team der TU Wien war für den Auswurfmechanismus und die Entwicklung des Onboard-Computers zuständig. Dabei konnte das Team bereits auf einige Erfahrung zurückblicken: Es entwickelte etwa die Bordelektronik des Nano-Satelliten Pegasus, der 2017 in den Erdorbit gebracht wurde. Außerdem entwickelte das Space Team bereits mehrere Experimentalraketen, die bei internationalen Wettbewerben mit Erfolg in Höhen von bis zu 6 km vordrangen.

Das TU Wien Space Team hat mittlerweile über 70 Mitglieder aus ganz unterschiedlichen Studienrichtungen der TU Wien. „Wichtig ist bei uns in erster Linie, dass man sich für Raum- und Luftfahrt begeistern kann“, sagt Christoph Fröhlich. „Zu tun gibt es bei uns viel: Vom Programmieren bis zum Qualitätscheck, von der Elektronik bis zur Aerodynamik – in der Raketentechnik hat man mit vielen unterschiedlichen Herausforderungen zu tun, die man nur interdisziplinär lösen kann.“

Anfang März wird eine Delegation des Teams nach Kiruna (Schweden) aufbrechen. Das früheste Startfenster der REXUS-Rakete ist am 12. März – kurz darauf wird man bereits wissen, ob das ambitionierte Daedalus-Projekt gleich beim ersten Versuch ein Erfolg war.

Weitere Informationen:
www.spaceteam.at
www.daedalus-project.eu
www.rexusbexus.net

Kontakt:
Christoph Fröhlich
Präsident des TU Wien Space Teams
T: +43-1-58801-376245
christoph.froehlich@spaceteam.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2018/daedalus Weitere Bilder

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Daten „fühlen“ mit haptischen Displays
15.11.2018 | Karlsruher Institut für Technologie

nachricht Ein magnetisches Gedächtnis für den Computer
12.11.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics