Kompostierbare Elektronik zum Ausdrucken

Biomüll statt Elektroschrott: Für biologisch leicht abbaubare elektronische Bauteile entwickelt die BMBF-Nachwuchsgruppe Biolicht am KIT nachhaltige Druckmaterialien und Tinten Bild: KIT

Halbleiter und Farbstoffe aus Pflanzenextrakten oder Isolatoren aus Gelatine – die Nachwuchswissenschaftler arbeiten mit biologisch leicht abbaubaren Materialien. „Diese sind zwar nicht so langlebig wie die anorganischen Alternativen, doch die Lebensdauer von Einwegelektronik überstehen sie schadlos“, sagt Dr. Gerado Hernandez-Sosa, Leiter der nun eingerichteten Nachwuchsforschergruppe Biolicht. Zudem könne man die Elektronik, sobald sie ausgedient hat, einfach in den Biomüll oder auf den Kompost werfen, wo sie gleich einer Bananenschale verrotte.

Für gängige gedruckte Elektronik, etwa für organische Leuchtdioden (OLEDs), gilt dies bislang nicht. „Als ‚organisch‘ bezeichnen wir alle Kunststoffe auf Kohlenstoffbasis. Über die Umweltverträglichkeit sagt der Begriff allein noch nicht aus“, erklärt Dr. Hernandez-Sosa. So sei beispielsweise die Trägerfolie von OLEDs – das Papieräquivalent für elektronische Tinten – aus dem gleichen Plastik wie herkömmliche Getränkeflaschen.

Die Nachwuchsgruppe Biolicht verwendet hierfür nur Materialien, die in der Natur tatsächlich vorkommen. Als Trägerfolien eignen sich beispielsweise Speisestärke, Zellulose oder Chitin. Auf Metalle und Halbmetalle, wie Silizium, verzichten die Wissenschaftler fast vollständig. Der Vorteil von Plastik: Es ist biegsam, kostengünstig und lässt sich zu kilometerlangen Druckerfolien verarbeiten. Mit dieser Technologie wird es möglich, etwa Aufkleber mit einer elektronischen Ampel für das Haltbarkeitsdatum oder Pflaster mit eingebauten Sensoren, die den Heilungsprozess überwachen, im industriellen Maßstab herzustellen.

Zunächst gilt es allerdings auf die kompostierbaren Folien elektronische Bauteile zu drucken, ähnlich wie Buchstaben auf Papier. Ihre Funktion hängt von der verwendeten Tinte ab: Anstelle von Farbpartikeln sind darin leitende, halbleitende oder nichtleitende, also isolierende, Materialien gelöst. Nach dem Auftragen trocknet das flüssige Lösemittel und die zurückbleibende Schicht bildet das entsprechende Bauteil. Ziel der Nachwuchsgruppe ist es, biologisch abbaubare Tinten zu entwickeln, die auf das neue Folienmaterial abgestimmt sind und gleichzeitig mit bestehenden Geräten gedruckt werden können. „Hersteller organischer Elektronik können so auf die umweltfreundlichen Materialien umsteigen, ohne ihr Druckerarsenal auszutauschen“, sagt Dr. Hernandez-Sosa.

Für die Tinten müssen die Nachwuchswissenschaftler nun umweltverträglichen Materialen mit den gewünschten elektrischen Eigenschaften identifizieren. Beispielsweise eignet sich die Hartgelatine, aus der Medikamentenkapseln bestehen, zum Isolieren. Aufwendig ist auch die Wahl des Lösemittels: Eine Voraussetzung ist, dass es bei druckfähigen Temperaturen in flüssiger Form vorliegt. Weiterhin darf es im Unterschied zu gewöhnlicher Tinte nicht in das Trägermaterial eindringen, sondern sollte darauf einen geschlossenen Flüssigkeitsfilm bilden, ohne abzuperlen.

Ein zu dickflüssiges Lösemittel verstopft die Poren des Druckers. Ein zu dünnflüssiges verläuft auf der Trägerfolie und benetzt sie nicht gleichmäßig. Die Eigenschaften des getrockneten Materialfilms sind aber für die Funktion der elektrischen Bauteile entscheidend: So darf seine Dicke, die weniger als einem tausendstel Millimeter beträgt, maximal um fünf Prozent schwanken. Die Wissenschaftler rechnen damit, kompostierbare organische Elektronik innerhalb der nächsten drei Jahre marktreif zu machen.

Die Nachwuchsgruppe Biolicht ist strukturell am Institut für Lichttechnik des KIT angesiedelt. Ihre Labore hat sie am InnovationLab in Heidelberg, einer anwendungsorientierten Forschungs- und Transferplattform von Wissenschaft und Wirtschaft. Träger sind neben dem Karlsruher Institut für Technologie, die Unternehmen BASF SE, Merck, Heidelberger Druckmaschinen AG und SAP AG sowie die Universität Heidelberg.

Mehr Informationen zur Forschergruppe:

http://www.innovationlab.de/de/forschung/devicephysik/ag-hernandez-sosa

Video zur Forschung:

http://www.kit.edu/videos/druckbareelektronik

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Lilith C. Paul, Young Investigator Network, Tel.: +49 721 608 46184, E-Mail: lilith.paul@kit.edu

Das Karlsruher Institut für Technologie (KIT) vereint als selbständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft. Seine drei Kernaufgaben Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

http://www.innovationlab.de/de/forschung/devicephysik/ag-hernandez-sosa
http://www.kit.edu/videos/druckbareelektronik

Media Contact

Monika Landgraf Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer