Grüne Laser mit 1 kW Ausgangsleistung im cw-Betrieb für Bearbeitung hochreflektiver Metalle

Prozess des Laserstrahlschweißens von poliertem Kupfer © Fraunhofer IWS Dresden

Mit einer Ausgangsleistung von 1 kW bei 515 nm Wellenlänge und einer Strahlqualität von ca. 2,5 mm mrad eröffnet der Laser neue Anwendungsmöglichkeiten zum Schweißen und Schneiden der genannten Werkstoffe und zugleich neue Einsatzgebiete im Bereich Elektromobilität und Leistungselektronik.

Wird Laserlicht mit einer Wellenlänge von 515 nm beim Laserstrahlschweißen von Kupfer, Aluminium und Gold eingesetzt, ergibt sich gegenüber herkömmlichen cw-Laserstrahl-quellen eine vielfach bessere Absorption. Das ermöglicht ein wesentlich prozessstabileres Laserstrahlschweißen auch an polierten Bauteilen.

Vergleichende Versuche zu Single-Mode-Faserlaser im Wellenlängenbereich von 1 µm belegen, dass die Energieeinkopplung und Schmelzbaderzeugung bei 515 nm Wellenlänge aufgrund der besseren Absorption bereits bei deutlich geringerer Intensität erfolgt. Dies ermöglicht völlig neue Prozesse und Anwendungen vor allem im Bereich der Kontaktierung. Beispielhaft hierfür ist das Fügen von Cu-Folien.

Auch im Anwendungsbereich Schneiden haben die Versuche mit dem „grünen“ cw-Laser mit 1 kW Ausgangsleistung bestätigt, dass sich die Wellenlänge von 515 nm besonders für die Bearbeitung von hochreflektierenden Metallen eignet.

Im Fall von Kupfer wurde mit Hilfe eines Schmelzschneidprozesses ein 1 mm dickes Blech getrennt, wobei sowohl grat- als auch oxidfreie Schnittkanten erzeugt werden konnten. Wird für das gleiche Material Laserstrahlung im 1 µm Wellenlängenbereich verwendet, ist dagegen ein Hochdruckbrennschnitt erforderlich, der zu einer starken Oxidation im Bereich der Schnittkanten führt.

Beim Schneiden von Messing, hochlegierten Stählen sowie Aluminiumlegierungen bis zu einer Blechstärke von 4 mm mit 1 kW Ausgangsleistung bei 515 nm liegen die erreichten Schneidgeschwindigkeiten um bis zu 10 % höher als im Vergleich zum Schmelzschnitt mit Laserstrahlung im 1 µm Wellenlängenbereich, vergleichbare Qualitäten vorausgesetzt.

Entdecken Sie neueste Forschungs- und Entwicklungsschwerpunkte des Fraunhofer IWS auf der Hannover Messe Industrie vom 25. bis 29. April 2016 (Industrial Supply, Halle 6, Stand A30) und vom 31. Mai bis 2. Juni 2016 auf der LASYS in Stuttgart (Halle 4, Stand 4C31) oder besuchen Sie unsere Experten direkt im Fraunhofer IWS in Dresden. Wir stehen Ihnen mit unserem Know-how gern zur Verfügung.

Mehr unter www.iws.fraunhofer.de

Ihre Ansprechpartner für weitere Informationen:

Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden
01277 Dresden, Winterbergstr. 28

Geschäftsfeld Fügen
Dr. Jens Standfuß
Telefon: +49 351 83391-3212
Telefax: +49 351 83391-3210
E-Mail: jens.standfuss@iws.fraunhofer.de

Geschäftsfeld Laserabtragen und -trennen
Dr. Andreas Wetzig
Telefon: +49 351 83391-3229
Telefax: +49 351 83391-3300
E-Mail: andreas.wetzig@iws.fraunhofer.de

Presse und Öffentlichkeitsarbeit
Dr. Ralf Jäckel
Telefon: +49 351 83391-3444
Telefax: +49 351 83391-3300
E-Mail: ralf.jaeckel@iws.fraunhofer.de

http://www.iws.fraunhofer.de und
http://www.iws.fraunhofer.de/de/presseundmedien/presseinformationen.html

Media Contact

Dr. Ralf Jaeckel Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer