Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Greifswalder Plasmaforscher erforschen Nanomaterialien für effiziente Energiespeicherung

13.01.2017

Im Januar startete das von der Leibniz-Gesellschaft mit 1,3 Mio. Euro geförderte Forschungsvorhaben CarMON (New Carbon-Metal Oxide Nanohybrids for Efficient Energy Storage and Water Desalination). Das Projekt zur Erforschung neuer effizienter Energiespeicherung und Wasserentsalzung wird in einer Zusammenarbeit des Leibniz-Institutes für Plasmaforschung und Technologie e.V. (INP) mit dem Leibniz-Institut für Neue Materialien Saarbrücken und dem Max-Planck-Institut für Eisenforschung GmbH Düsseldorf realisiert.

Im Rahmen des Projekts wird die Herstellung von Nanomaterialien für die Energiespeicherung in Batterien erforscht. Ziel des Forschungsverbundes ist es, die Struktur dieser Materialien mit charakteristischen Teilchenmaßen in der Größe von einigen Milliardstel eines Meters in Zukunft präzise kontrollieren und reproduzieren zu können.

Dies ist eine Voraussetzung, um solche Verfahren auf den industriellen Fertigungsmaßstab zu übertragen und Energie effizienter zu speichern. Damit ordnet sich das Projekt in die vielfältigen Forschungsanstrengungen einer effizienteren Nutzung von erneuerbaren Energiequellen ein.

Viele der uns heute bekannten Nanomaterialien werden in Herstellungsverfahren unter Verwendung physikalischer Plasmen entwickelt. Plasmen sind ionisierte Gase, die auf Grund ihrer einzigartigen physikalischen Eigenschaften neue Möglichkeiten für die Nanotechnologie und für die Erzeugung von Werkstoffen auf atomarer Ebene bieten.

„In dieses Projekt können die Wissenschaftler des INP ihre Expertise in der Aufklärung der Zusammenhänge zwischen den im Plasma herrschenden Bedingungen und dem erzeugten Material auf der Nanoskala einbringen“, erläutert Dr. Rüdiger Foest, Leiter des Forschungsschwerpunktes Materialien und Oberflächen.

Die Energie und Konzentration der im Plasma erzeugten Atome, Ionen und Moleküle bestimmen im Prozess die Eigenschaften der entstehenden Nanostrukturen. Die Kenntnis dieser Zusammenhänge ermöglicht Dr. Angela Kruth, Leiterin des Projekts, gemeinsam mit dem Projektteam die erforderlichen Strukturen oxidischer Nanopartikel gezielt herzustellen.

Die Industrie setzt hohe Erwartungen in Nanotechnologie. Plasmagestützte Prozesse ermöglichen hier spannende neue Wege. Für den Technologietransfer können sie dringend notwendige Türöffner der Zukunft darstellen. Das INP entwickelt aktuell auch Plasmaprozesse für die Erzeugung von Nanopartikeln und Nanoschichten, welche sich in technischen Komponenten für die Energieumwandlung aus regenerativen Energiequellen wiederfinden.

Das betrifft bedeutsame Technologien wie Brennstoffzellen, Elektrolyseure und die Solartechnik. Zugleich stehen Hochtechnologien, wie unter anderem die Präzisionsoptik, die Halbleitertechnologie oder die Synthese von biokompatiblen Materialien im Fokus der Forschungsinteressen des Instituts.

Stichwort Plasma:
Plasma ist ein (teilweise) ionisiertes Gas, welches aufgrund seiner elektrischen Leitfähigkeit eine Reihe besonderer Eigenschaften aufweist. Wenn auch natürliche Plasmen auf der Erde auf solch exotische Phänomene wie z.B. Blitze oder Nordlichter beschränkt sind, befinden sich 99% der sichtbaren Materie im Universum im Plasmazustand, darunter unsere Sonne und die Sterne. Solche Sternenplasmen werden in Experimenten zur Fusionsforschung auf der Erde nachempfunden. Neben diesem sehr heißen Plasma können technisch auch kalte Plasmen erzeugt werden, für vielfältige Anwendungen in der Oberflächen- und Dünnschichttechnologie oder auch in der Medizintechnik.

Das Leibniz-Institut für Plasmaforschung und Technologie (INP):
Forschung und Entwicklung von der Idee bis zum Prototyp – Mit etwa 176 Wissenschaftler(inne)n, Ingenieur(inn)en und weiteren Fachkräften ist das Greifswalder INP europaweit eine der führenden außeruniversitären Forschungseinrichtungen zu Niedertemperaturplasmen, deren Grundlagen und technischen Anwendungen. Neben der anwendungsorientierten Grundlagenforschung fördert das Leibniz-Institut die Entwicklung plasmagestützter Verfahren und Produkte. Die Themen orientieren sich dabei an den Erfordernissen des Marktes. Damit bietet das INP neben kundenspezifischen Lösungen auf dem Gebiet der Plasmatechnologie auch Serviceleistungen wie Machbarkeitsstudien oder Beratungen an. Derzeit stehen Plasmen für Oberflächen und Materialien, Umwelt und Energietechnik sowie interdisziplinäre Themen in Biologie und Medizin im Mittelpunkt des Interesses. Innovative Produktideen aus der Forschung des INP werden direkt mit der Industrie erforscht oder durch die Ausgründungen des Institutes in marktfähige Produkte und Dienstleistungen transferiert.

Ansprechpartner am Leibniz-Institut für Plasmaforschung und Technologie (INP):
Dr. Angela Kruth
Leiterin des Projekts „CarMON“
Telefon: +49 3834 554 3860
angela.kruth@inp-greifswald.de

Dr. Rüdiger Foest
Forschungsschwerpunktleiter Materialien und Oberflächen
Telefon: +49 3834 554 3835
foest@inp-greifswald.de

Charlotte Giese
Stabsstelle Kommunikation Öffentlichkeitsarbeit
Tel.: +49 3834 554 3897
charlotte.giese@inp-greifswald.de

Weitere Informationen:

http://www.inp-greifswald.de/web3.nsf/index?OpenPage&Eintrag=00F6EFB01F8CAE8...

Charlotte Giese | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schlaflos wegen Handy? Neue Displays könnten Abhilfe schaffen
21.06.2018 | Universität Basel

nachricht Sensoren auf Gummibärchen: Team druckt Mikroelektroden-Arrays auf weiche Materialien
21.06.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics