Forscherteam macht wichtige Entdeckung für die nächste Solarzellengeneration

Die Wissenschaftler der Monash University, in Zusammenarbeit mit Kollegen der Universitäten in Wollongong, Australien und Ulm haben Tandemzellen aus farbstoffsensibilisierten Solarzellen hergestellt, die eine dreimal höhere Effizienz bei der Energieumwandlung gegenüber bisherigen Tandemzellen dieser Art aufweisen.

Der Schlüssel zu dieser Innovation lag laut Bach in der Entdeckung eines neuen, effizienteren Farbstoffes, der den Betrieb von invertierten farbstoffsensibilisierten Solarzellen deutlich effizienter macht. Laut Bach könnte dieser Durchbruch die Zellen zu einer guten und konkurrenzfähigen Alternative zu herkömmlichen Siliziumzellen machen.

Der Tandem-Ansatz – das Stapeln mehrerer Solarzellen – wurde bei traditionellen Photovoltaikanlagen bereits erfolgreich zur Maximierung der Energieausbeute angewandt. Hierfür gab es bei farbstoffsensibilisierten Solarzellen bisher jedoch Hindernisse, da es kein Verfahren zur Schaffung eines invertierten Systems gab, bei dem die Farbstoffmoleküle – wenn Licht auf sie trifft – positive Ladungen effizient an einen Halbleiter weitergeben konnten. Bei ihrem Projekt stapelte das Forscherteam zwei Arten von farbstoffsensibilisierten Solarzellen – eine invertierte und eine Standardzelle. Dadurch konnten sie erstmals eine Tandemzelle schaffen, die die Effizienz ihrer einzelnen Komponenten überstieg. „Indem wir einen Weg gefunden haben, invertierte farbstoffsensibilisierte Solarzellen sehr effizient arbeiten zu lassen, haben wir der Schaffung von farbstoffsensibilisierten Tandemzellen als wirtschaftliche Alternative die Tür geöffnet“, erläutert Bach die Bedeutung der Arbeit.

„Auch wenn diese neue Tandemtechnologie noch in den Kinderschuhen steckt, ist ein erster wichtiger Schritt in Richtung der Entwicklung der nächsten Solarzellengeneration getan, die günstig und mit energieeffizienten Produktionsmethoden hergestellt werden kann.“

Weitere Informationen:
Institut Ranke-Heinemann / Australisch-Neuseeländischer Hochschulverbund
Pressestelle
Friedrichstr. 95
10117 Berlin
Email: berlin@ranke-heinemann.de
Tel.: 030-20 96 29 593
Das Institut Ranke-Heinemann / Australisch-Neuseeländischer Hochschulverbund ist die zentrale Einrichtung aller australischen und neuseeländischen Universitäten in Deutschland, Österreich und der Schweiz, zuständig für Wissens- und Forschungstransfer, Forschungsförderung sowie Studenten- und Wissenschaftleraustausch und für die Betreuung von Studierenden und Schülern, die ein Studium Down Under vorbereiten.

Media Contact

Sabine Ranke-Heinemann idw

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer