Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entwickeln Roboterarme biegsam wie Elefantenrüssel: für große Greifer und kleine Endoskope

18.03.2019

Sie können sich präzise um Windungen und Ecken schlängeln, bewegen sich frei in alle Richtungen: Die biegsamen Roboterarme, die Professor Stefan Seelecke und seine Forschergruppe an der Universität des Saarlandes entwickeln, haben keine steifen Gelenke, dafür aber Muskeln aus Formgedächtnis-Drähten. Diese brauchen weder Druckluft noch schweres Zubehör, sondern funktionieren nur mit elektrischem Strom. Das Material selbst hat Sensoreigenschaften, daher lassen sich die Arme ohne zusätzliche Sensoren steuern. Große Roboter-Rüssel können mit der neuen Technologie ebenso ausgestattet werden wie haarfeine Tentakel für endoskopische Operationen.

Die Forscher demonstrieren mit Prototypen die Funktion ihrer Formgedächtnis-Arme vom 1. bis 5. April auf der Hannover Messe: Am saarländischen Forschungsstand B46 in Halle 2 suchen sie Partner für Weiterentwicklungen.


Die Doktoranden Dominik Scholtes (l.), Rouven Britz und Yannik Goergen (r.) aus Prof. Stefan Seeleckes Team mit Prototypen der biegsamen Roboterarme, die auf der Hannover Messe zu sehen sein werden.

Foto: Oliver Dietze


Prof. Dr. Stefan Seelecke

Foto: Oliver Dietze

Ob Menschenarm oder Robotergreifer: Der Beweglichkeit dieser Gliedmaßen sind Grenzen gesetzt. Eher sperrige Gelenke verbinden unbiegsame Knochen oder Bauteile. Bewegungen lassen sie nur in bestimmte Richtungen zu. Dagegen haben Elefantenrüssel oder Krakenarme mehr an Gewandtheit zu bieten:

Durch zehntausende Muskeln können die Tiere sie nach Bedarf in alle Richtungen schlenkern, gezielt verbiegen und damit äußerst kraftvoll zupacken. An ihrem Beispiel haben sich Ingenieure der Universität des Saarlandes orientiert: Sie entwickeln Roboterarme, die ohne Gelenke und starres Bauteil-Skelett auskommen, dafür aber ebenso verformbar wie leicht sind – und überaus wendig agieren können.

In einem von der Deutschen Forschungsgemeinschaft geförderten Projekt arbeiten Professor Stefan Seelecke und sein Team gemeinsam mit Forschern der TU Darmstadt an dünnen, präzise steuerbaren künstlichen Tentakeln: Diese können in Zukunft in der Medizin als Führungsdraht bei Herzoperationen oder als Endoskop bei Magen- und Darmspiegelungen zum Einsatz kommen.

Dafür statten die Forscher die Tentakel mit zusätzlichen Funktionen aus, etwa einer versteifbaren Spitze für Stoßbewegungen oder einem Greifer. Im großen Stil funktioniert die Technologie ebenso: Auch große Roboter-Rüssel sind möglich - die Technik ist skalierbar.

Dreh- und Angelpunkt sind die künstlichen Muskeln, die das Saarbrücker Forscherteam seinen Roboterarmen verleiht: Die Muskelstränge bestehen aus haarfeinen Drähten aus Nickel-Titan, die anspannen und entspannen können. Sie kontrahieren wie echte Muskeln, je nachdem ob Strom fließt oder nicht.

„Die Legierung Nickel-Titan besitzt ein so genanntes Formgedächtnis. Wird ein Draht aus diesem Material verbogen, kann er seine ursprüngliche Form wieder annehmen. Fließt Strom durch einen solchen Draht, erwärmt er sich und seine Kristallstruktur wandelt sich so um, dass er sich verkürzt. Wird der Strom abgeschaltet, kühlt er ab und wird wieder lang“, erklärt Professor Stefan Seelecke.

Sein Team am Lehrstuhl für intelligente Materialsysteme bündelt die feinen Drähte wie Muskelfasern. „Mehrere Drähte geben durch die größere Oberfläche mehr Wärme ab, dadurch erreichen wir schnelle Kontraktionen. Die Drähte haben die höchste Energiedichte aller bekannten Antriebsmechanismen. Auf kleinem Raum entwickeln sie hohe Zugkraft“, erläutert Seelecke, der mit seiner Arbeitsgruppe auch am Zentrum für Mechatronik und Automatisierungstechnik (Zema) forscht. Dort entwickeln sie verschiedenste Anwendungen für die Drähte: vom neuartigen Kühlsystem bis hin zu Ventilen und Pumpen.

Bei ihren Roboter-Armen verbinden die Ingenieure die Drahtstränge als Beuge- und Streck-Muskulatur, so dass ihr Zusammenspiel eine fließende Bewegung hervorbringt. „Bei der Tentakel, die in der Medizin künftig etwa als Katheter oder Endoskop Anwendung finden kann, kommen wir hierbei mit einem Durchmesser von etwa 300 bis 400 Mikrometer aus. Auf diesem Raum lassen sich sonst keine anderen Antriebstechniken unterbringen, was etwa die Möglichkeiten bisheriger Katheter-Verfahren einschränkt“, erläutert Paul Motzki, der über die Formgedächtnis-Drähte seine Doktorarbeit geschrieben hat, und als wissenschaftlicher Mitarbeiter in Seeleckes Team forscht.

Im Gegensatz dazu ist die Tentakel hochpräzise steuerbar und kann als Werkzeug mehrere Funktionen erfüllen, etwa mit ihrer Spitze stoßen. Die Forscher modellieren und programmieren hierzu Bewegungsmuster zur Steuerung auf einen Halbleiterchip. Das System kommt dabei völlig ohne Sensoren aus. Die Drähte liefern selbst alle nötigen Daten. „Das Material der Drähte hat Sensoreigenschaften. Die Steuerungseinheit erkennt anhand der Messdaten des elektrischen Widerstandes zu jeder Zeit die genaue Position und Ausrichtung der Drähte“, erläutert Paul Motzki.

Anders als heute übliche Roboterarme, die auf Elektromotoren, Druckluft oder Hydraulik angewiesen sind, arbeiten die Roboterarme der Saarbrücker Forscher völlig unabhängig von schwerem Gerät im Hintergrund. Alles, was die Drähte benötigen, ist Strom. „Das macht sie leicht, anpassungsfähig, leise und in der Herstellung vergleichsweise günstig“, sagt Professor Seelecke. Auf der Hannover Messe zeigen die Forscher ihre Prototypen und demonstrieren mit Bewegungsabläufen das Potenzial dieser so genannten Kontinuums-Roboter.

Weitere Pressefotos für den kostenlosen Gebrauch finden Sie unter
https://www.uni-saarland.de/universitaet/aktuell/pm/pressefotos.html.

Englische Version der Pressemitteilung:
https://www.uni-saarland.de/nc/universitaet/aktuell/artikel/nr/20606.html

Kontakt für die Medien:
Prof. Dr. Stefan Seelecke, Lehrstuhl für intelligente Materialsysteme der Universität des Saarlandes: Tel. 0681 302-71341; E-Mail: stefan.seelecke@imsl.uni-saarland.de
Dr. Paul Motzki, Tel.: 0681/85787-545; E-Mail: p.motzki@zema.de

Hintergrund:
Professor Stefan Seelecke und sein Forscherteam am Lehrstuhl für intelligente Materialsysteme und am Zema nutzen die Eigenschaften der Formgedächtnis-Legierung Nickel-Titan für verschiedene Anwendungen.

Am Zentrum für Mechatronik und Automatisierungstechnik Zema in Saarbrücken arbeiten Universität des Saarlandes, Hochschule für Technik und Wirtschaft sowie Industriepartner zusammen. In zahlreichen Projekten entwickeln sie industrienah und setzen neue Methoden aus der Forschung in die industrielle Praxis um. http://www.zema.de/

Der saarländische Forschungsstand wird organisiert von der Kontaktstelle für Wissens- und Technologietransfer der Universität des Saarlandes (KWT). Sie ist zentraler Ansprechpartner für Unternehmen und initiiert unter anderem Kooperationen mit Saarbrücker Forschern. https://www.kwt-uni-saarland.de/

Wissenschaftliche Ansprechpartner:

Prof. Dr. Stefan Seelecke, Lehrstuhl für intelligente Materialsysteme der Universität des Saarlandes: Tel. 0681 302-71341; E-Mail: stefan.seelecke@imsl.uni-saarland.de
Dr. Paul Motzki, Tel.: 0681/85787-545; E-Mail: p.motzki@zema.de

Claudia Ehrlich | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Innovative Power-to-Gas-Technologien für die Energiewende
11.02.2020 | Karlsruher Institut für Technologie

nachricht Strategien für eine erfolgreiche Sektorenkopplung
10.02.2020 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Kiss and Run“ zur Abfallverwertung in der Zelle

14.02.2020 | Biowissenschaften Chemie

Kurze Impulse mit großer Wirkung

14.02.2020 | Biowissenschaften Chemie

ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze

14.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics