Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entwickeln blitzartige Alternative zum Löten von Elektronikbauteilen

25.02.2016

Auf den Mikroprozessoren von Smartphones befinden sich zahlreiche winzige Lötpunkte. Sie verbinden die integrierten Schaltkreise mit dem Elektroniksystem und leiten den Strom hindurch. Da Mobilgeräte heute immer flacher, aber auch leistungsfähiger werden, können sie bei intensivem Betrieb erheblich erhitzen. Dann werden ihre winzigen Lötpunkte zur Schwachstelle im System. Materialforscher der Universität des Saarlandes haben jetzt mit Kollegen in Helsinki ein neues Material entdeckt, das solche Bauelemente und Werkstoffe durch eine blitzartige chemische Reaktion zusammenzufügen kann. Die Forschungsergebnisse wurden online in den Scientific Reports des US-Fachmagazins Nature veröffentlicht.

Elektronische Bauelemente werden immer kleiner und müssen gleichzeitig vielfältig miteinander vernetzt werden. In flachen Mobilgeräten etwa müssen Millionen von kleinsten Rechen- und Speichereinheiten im Nanometerbereich angeordnet werden.


Erläuterung der Infografik: Schematische Darstellung der physikalischen Prozesse während der selbstfortschreitenden Reaktion. (a) Nach lokaler Zündung bewegt sich die Reaktionsfront durch die Multilage und setzt Wärme frei. (b) Unmittelbar vor der Reaktionsfront findet atomare Diffusion senkrecht und Wärmeleitung parallel zu den Grenzflächen statt.


Professor Frank Mücklich

Steve Welter

„Die elektronischen Schaltungen in Handys oder Tablets sind ein äußerst komplexes, dreidimensionales Gebilde, das wie ein zentrales Nervensystem alle Funktionen steuert“, sagt Frank Mücklich, Professor für Funktionswerkstoffe der Universität des Saarlandes und Leiter des Steinbeis-Forschungszentrums für Werkstofftechnik (MECS).

Die elektronischen Bauelemente werden bisher in Öfen bei Temperaturen von einigen hundert Grad Celsius miteinander verlötet. Die Legierungen der Lötpunkte müssen bei mäßiger Hitze schmelzen und wieder erstarren, um die empfindlichen Schaltkreise nicht zu zerstören. „Wird das Smartphone jedoch später im intensiven Betrieb zu heiß, beginnen sich diese Lötpunkte durch Korrosion zu zersetzen, das Gerät fällt dann rasch aus“, erklärt Mücklich.

Gemeinsam mit Wissenschaftlern in Helsinki hat sein Team daher nach anderen Möglichkeiten gesucht, um Metalle in der Dimension von wenigen Nanometern miteinander zu verbinden. „Wir legen dafür mehrere hauchdünne Schichten von Aluminium und Ruthenium übereinander, die tausendmal flacher sind als ein menschliches Haar. Wenn darauf ein kurzer intensiver Laserstrahl trifft, wird in der Nanometer-Schicht eine hohe Energiemenge freigesetzt, die sich mit einer Geschwindigkeit von zehn Metern pro Sekunde ausbreitet und bis zu 2000 Grad Celsius erreichen kann“, erklärt Mücklich.

Durch die kurzzeitige enorme Hitze werden die benachbarten Bauteile miteinander fest verbunden, die integrierten Schaltkreise aber nicht beschädigt. Das dabei entstehende Material heißt Ruthenium-Aluminid. Es verbindet die Bauteile als dünne Zwischenschicht, so wie bisher die Lötpunkte. Durch die chemische Reaktion, bei der abrupt viel Energie frei wird, nimmt es jedoch eine exakte, gleichmäßige Kristallstruktur an.

Dies konnten die Materialforscher sowohl in verschiedenen Experimenten als auch durch eine detaillierte Simulation der Atombewegungen zeigen. „Diese homogene Schicht verbindet die Materialien fest miteinander und bleibt wegen des hohen Schmelzpunktes im Gegensatz zur Lötverbindung auch dann noch stabil, wenn sich das ganze System stark erwärmen sollte“, erläutert der Materialwissenschaftler.

„Im Vergleich zu Nickel-Aluminid, das von anderen Forschern bereits untersucht wurde, hat unser Verfahren den Vorteil, dass die Zwischenschicht durch die Reaktion nicht spröde wird und damit auch mechanisch äußerst belastbar ist“, sagt Frank Mücklich. Da man ohne die gleichmäßige Hitze eines Schmelzofens auskommt, lassen sich mit der neuen Methode empfindliche Elektronik-Bauteile auf engstem Raum miteinander verbinden.

„Durch den Laserimpuls können wir die chemische Reaktion der Ruthenium-Aluminium-Schicht an wenigen Punkten auslösen und so steuern, dass auf winzigen Flächen kurzzeitig eine starke Hitze entsteht und nur wenige Mikrometer weiter normale Zimmertemperaturen herrschen“, nennt Mücklich als weiteren Vorteil. Diese flexible Steuerung mache das Verfahren auch für Bauteile interessant, bei denen Metalle mit Kunststoffen oder Verbundmaterialien verbunden werden müssen, etwa in der Automobil- und Flugzeugindustrie.

„Man könnte die verbindende Schicht zum Beispiel so aufbauen, dass die Wärme sowohl das Metall als auch den sich völlig anders verhaltenden Verbundwerkstoff mit der jeweils passenden Energiemenge aufschmilzt. Dann könnte man, wie wir vermuten, beide blitzartig miteinander verschweißen“, erklärt der Saarbrücker Forscher.

In weiteren Untersuchungen soll es nun darum gehen, die Komponenten von Ruthenium- und Aluminiumatomen geometrisch so aufzubauen, dass man alle gewünschten Eigenschaften wie auf Knopfdruck abrufen kann. „Wir gehen davon aus, dass man damit viele hitzeempfindliche Bauteile schonend und gleichzeitig extrem rasch zusammenfügen kann. Es wird aber auch dabei helfen, ganz unterschiedliche Materialien miteinander zu verbinden, bei denen man bisher mit Schweißen, Löten oder Kleben keine befriedigenden Ergebnisse erzielen konnte“, sagt Frank Mücklich.

Die Forschungsergebnisse wurden als Open Access-Artikel online in den Scientific Reports von Nature veröffentlicht. An der Publikation haben Materialwissenschaftler der Universität des Saarlandes und der Universität in Helsinki sowie des Paul-Scherrer-Instituts in der Schweiz mitgewirkt:

www.nature.com/articles/srep19535 

Hintergrund zur Saarbrücker Materialforschung

Die Materialwissenschaft und Werkstofftechnik auf dem Campus der Universität des Saarlandes zählt mit rund 300 Wissenschaftlern zu den fünf bundesweit führenden Standorten auf diesem Gebiet. Die derzeit 13 Professoren an der Universität sind eng vernetzt mit den Forschern am Leibniz-Institut für Neue Materialien (INM), dem Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren (IZFP) und dem Steinbeis-Forschungszentrum Material Engineering Center Saarland (MECS).

Fragen beantwortet:

Prof. Dr. Frank Mücklich
Lehrstuhl für Funktionswerkstoffe der Universität des Saarlandes
Steinbeis-Forschungszentrum Material Engineering Center Saarland (MECS)
Tel. 0681/302-70500
Mail: muecke@matsci.uni-sb.de

Weitere Informationen:

http://www.nature.com/articles/srep19535
http://www.fuwe.uni-saarland.de
http://www.mec-s.de

Friederike Meyer zu Tittingdorf | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?
10.07.2020 | Technische Universität Ilmenau

nachricht KIT forscht in vier neuen Batterie-Kompetenzclustern
09.07.2020 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics