Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Flower Power“: Photovoltaik nach dem Vorbild der Rose

22.06.2016

Mit einer Oberfläche wie bei Pflanzen können Solarzellen mehr Licht aufnehmen und damit mehr Strom erzeugen. Forscher des Karlsruher Instituts für Technologie (KIT) reproduzierten die epidermalen Zellen von Rosenblütenblättern, die eine besonders starke Antireflexwirkung besitzen, und integrierten die transparente Nachbildung in eine organische Solarzelle. Dies führte zu einer relativen Erhöhung der Effizienz von zwölf Prozent. Darüber berichten die Wissenschaftler in der Zeitschrift Advanced Optical Materials (DOI: 10.1002/adom.201600046).

Photovoltaik ähnelt im Prinzip der von Pflanzen betriebenen Photosynthese: Lichtenergie wird absorbiert und in eine andere Form von Energie konvertiert. Dabei ist es wichtig, das Lichtspektrum der Sonne möglichst breit zu nutzen und das Licht aus verschiedenen Einfallswinkeln aufzunehmen, da sich der Winkel mit dem Sonnenstand ändert.


Biomimetik: Die Epidermis eines Rosenblütenblatts wird in einer transparenten Schicht nachgebildet; diese wird in die Vorderseite einer Solarzelle integriert.

(Abbildung: Guillaume Gomard, KIT)

Pflanzen haben dies in ihrer langen Evolution erreicht – Grund genug für Photovoltaikforscher, sich bei der Entwicklung von Solarzellen mit breitem Absorptionsspektrum und hoher Einfallswinkeltoleranz an der Natur zu orientieren.

Wissenschaftler am KIT und am Zentrum für Sonnenenergie¬ und Wasserstoff¬Forschung Baden-Württemberg (ZSW) schlagen nun in der Zeitschrift Advanced Optical Materials vor, das äußere Abschlussgewebe von Blättern höherer Pflanzen, die sogenannte Epidermis, in einer transparenten Schicht nachzubilden und diese in die Vorderseite von Solarzellen zu integrieren, um deren Effizienz zu steigern.

Zunächst untersuchten die Forscher am Lichttechnischen Institut (LTI), Institut für Mikrostrukturtechnik (IMT), Institut für Angewandte Physik (APH) und Zoologischen Institut (ZOO) des KIT sowie am ZSW die epidermalen Zellen verschiedener Pflanzenarten auf ihre optischen Eigenschaften und vor allem ihre Antireflexwirkung.

Diese erwies sich als besonders stark bei Rosenblütenblättern, bei denen sie für stärkere Farbkontraste sorgt und damit die Chance auf Bestäubung erhöht. Wie die Wissenschaftler unter dem Elektronenmikroskop feststellten, besteht die Epidermis der Rosenblütenblätter aus einem ungeordneten Feld dicht gedrängter Mikrostrukturen, zusätzlich gerippt durch zufällig platzierte Nanostrukturen.

Um die Struktur dieser epidermalen Zellen über eine größere Fläche exakt zu reproduzieren, übertrugen die Forscher sie in eine Form aus Polydimethylsiloxan, einem Polymer auf Siliziumbasis, drückten die so entstandene negative Struktur in einen optischen Kleber ein und ließen diesen unter UV-Betrahlung aushärten. „Diese Methode ist einfach und kostengünstig und erzeugt Mikrostrukturen von einer Tiefe und Dichte, wie sie sich mit künstlichen Techniken kaum erreichen lassen“, berichtet Dr. Guillaume Gomard, Leiter der Gruppe Nanophotonik am LTI des KIT.

Die Wissenschaftler integrierten die transparente Nachbildung der Rosenblütenblätter-Epidermis in eine organische Solarzelle. Dadurch erhöhte sich die Energieumwandlungseffizienz bei senkrechtem Lichteinfall um zwölf Prozent (relative Steigerung). Bei sehr flachen Einfallswinkeln fiel die Effizienzsteigerung noch höher aus.

Die Forscher führen die Steigerung vor allem auf die hervorragende richtungsunabhängige Antireflexwirkung der nachgebildeten Epidermis zurück. Diese kann die Oberflächenreflexion unter fünf Prozent halten, auch wenn der Lichteinfallswinkel fast 80 Grad beträgt. Darüber hinaus fungiert jede einzelne der nachgebildeten epidermalen Zellen als Mikrolinse, wie Untersuchungen mit einem Konfokal-Lasermikroskop zeigten. Der Mikrolinseneffekt verlängert den optischen Pfad innerhalb der Solarzelle, steigert die Licht-Materie-Interaktion und erhöht die Wahrscheinlichkeit, dass die Lichtteilchen absorbiert werden.

„Unsere Methode lässt sich sowohl auf weitere Pflanzenarten als auch auf andere Photovoltaiktechnologien anwenden“, erklärt Guillaume Gomard. „Da die Oberflächen von Pflanzen multifunktional sind, könnte es künftig möglich sein, von ihnen mehrere Eigenschaften in einem Schritt zu übernehmen.“ Die Arbeit der Forscher wirft darüber hinaus eine grundlegende Frage auf: Welche Rolle spielt Unordnung in komplexen photonischen Strukturen? Zu dieser Frage laufen weitere Untersuchungen, von deren Ergebnissen die nächste Generation von Solarzellen profitieren könnte.

Ruben Hünig, Adrian Mertens, Moritz Stephan, Alexander Schulz, Benjamin Richter, Michael Hetterich, Michael Powalla, Uli Lemmer, Alexander Colsmann, and Guillaume Gomard: Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in Thin-Film Solar Cells. Advanced Optical Materials, 2016. DOI: 10.1002/adom.201600046

Details zum KIT-Zentrum Energie: http://www.energie.kit.edu

Weiterer Kontakt:
Margarete Lehné, Pressereferentin, Tel.: +49 721 608-48121, Fax: +49 721 608-43658, E-Mail: margarete.lehne@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Weitere Informationen:

http://www.energie.kit.edu

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Vernetzte Beleuchtung: Weg mit dem blinden Fleck
18.07.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie
17.07.2018 | Karlsruher Institut für Technologie (KIT)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics