Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019

Silizium gilt als Platzhirsch unter den Solarzell-Technologien. Doch schnell haben metallorganische Perowskit-Solarzellen aufgeholt und im Labor ebenfalls Wirkungsgrade von 25 Prozent erreicht, auch dank der Forschung des Karlsruher Instituts für Technologie (KIT). Ein multidisziplinäres Team von sechs Wissenschaftlerinnen und Wissenschaftlern des KIT hatte etwa Belege für ferroelektrische Mikrostrukturen gefunden und konnte damit die Eigenschaften moderner Perowskit-Solarzellen erklären. Für diese herausragende Leistung erhielt das Team gestern Abend den mit 50 000 Euro dotierten Erwin-Schrödinger-Preis der Helmholtz-Gemeinschaft und des Stifterverbandes.

Silizium gilt als Platzhirsch unter den Solarzell-Technologien. Doch schnell haben metallorganische Perowskit-Solarzellen aufgeholt und im Labor ebenfalls Wirkungsgrade von 25 Prozent erreicht, auch dank der Forschung des Karlsruher Instituts für Technologie (KIT).


Eine ausgeklügelte Charakterisierung auf der Nanoskala visualisiert mikroskopische elektrische Felder (ferroelektrische Domänen) in den Perowskit-Dünnschichten.

(Bild: Alexander Colsmann, Holger Röhm, Tobias Leonhard, KIT)

Ein multidisziplinäres Team von sechs Wissenschaftlerinnen und Wissenschaftlern des KIT hatte etwa Belege für ferroelektrische Mikrostrukturen gefunden und konnte damit die Eigenschaften moderner Perowskit-Solarzellen erklären. Für diese herausragende Leistung erhielt das Team gestern Abend den mit 50 000 Euro dotierten Erwin-Schrödinger-Preis der Helmholtz-Gemeinschaft und des Stifterverbandes.

„Für die Stromversorgung aus erneuerbaren Energien ist die Photovoltaik ein wichtiger Baustein mit hohem Potenzial in Forschung und Entwicklung – gerade mit Blick auf die eingesetzten Materialien“, sagt der Präsident des KIT, Professor Holger Hanselka. „Mit seiner Forschung, die die Felder Optoelektronik und keramische Werkstoffe erfolgreich kombiniert, liefert das Team des KIT entscheidende Beiträge zur Weiterentwicklung der Perowskit-Solarzellen. Mit solchen neuartigen Materialien in künftigen Solarzellen-Generationen kann Sonnenlicht noch effizienter in elektrischen Strom umgewandelt werden – und das mit einem Material, das technisch einfach zu verarbeiten und kostengünstig ist. Der Erwin-Schrödinger-Preis ist eine herausragende Auszeichnung dieser Leistung.“

Wie sähe die perfekte Solarzelle aus? Neben der schwarzen Oberfläche für eine optimale Absorption des Lichtes führt die perfekte Solarzelle die durch das Licht erzeugten Ladungsträger effizient aus dem Bauteil zu den Elektroden und minimiert so Rekombinationsverluste. Es gehen somit weniger Ladungsträger verloren.

Dem Wissenschaftler-Team ist es gelungen, Expertise aus den Bereichen der Optoelektronik und der Keramischen Werkstoffe so zusammenzubringen, dass sie ein vertieftes Verständnis der Perowskit-Solarzellen ermöglichen. Das multidisziplinäres Team aus den Fächern Elektrotechnik, Materialwissenschaften und Physik hat nun im neuen Materialwissenschaftlichen Zentrum für Energiesysteme (MZE) des KIT den Nachweis erbracht, dass ein typischer Baustein von metallorganischen Perowskit-Solarzellen, Methylammonium-Bleiiodid (MAPbI3), ferroelektrisch ist:

MAPbI3-Dünnschichten bilden spontan alternierende polare Domänen mit einer typischen Breite von 90 nm. „Die mikroskopischen elektrischen Felder in den Domänen können helfen, die photogenerierten Ladungsträger voneinander zu trennen und damit ihre Rekombination zu reduzieren“, sagt Holger Röhm, Doktorand am MZE. Gemeinsam mit Tobias Leonhard und Alexander D. Schulz hat Röhm die mikroskopischen elektrischen Felder des ferroelektrischen MAPbI3 und seine Mikrostruktur untersucht.

Video: Erwin-Schrödinger-Preis 2019: Geheimnis der Perowskit-Solarzellen gelüftet https://youtu.be/BHuACMdCuYc

Unter dem Dach des MZE versammelte das Team Experten aus der Photovoltaik und den Materialwissenschaften, um die einzigartigen Eigenschaften der Perowskit-Solarzellen zu analysieren. „Es war faszinierend zu sehen, wie Solarzellen mit Methoden charakterisiert werden können, die bislang für die Analyse klassischer Keramiken eingesetzt wurden“, sagt Michael J. Hoffmann, Leiter des Institutes für keramische Werkstoffe und Technologien, der seit mehr als drei Jahrzehnten ferroelektrische Keramiken untersucht. Und tatsächlich kann die Ferroelektrizität als Schlüsseleigenschaft von Perowskit-Solarzellen ein neues Designkriterium für neuartige lichtabsorbierende Materialien in Solarzellen bieten.

Alexander Colsmann, Leiter der Forschungsgruppe Organische Photovoltaik, betont, dass „MAPbI3-Perowskit-Solarzellen bekanntlich instabil und ihre Zersetzungsprodukte wasserlöslich und umweltgefährdend sind“, was einen dringenden Bedarf an bleifreien Alternativen zeigt. Während in der Vergangenheit durch die schrittweisen Modifikationen der Kristallzusammensetzung keine bleifreien Alternativen zu MAPbI3 mit ausreichender Photovoltaikleistung entdeckt wurden, ist die in den Perowskit-Solarzellen beobachtete Ferroelektrizität ein vielversprechendes Muster für eine neue Klasse von potenziell stabileren und umweltfreundlicheren Solarzellen. „Es ist faszinierend zu sehen, wie zwei Forschungsbereiche miteinander verschmelzen, die in der Vergangenheit nichts gemeinsam hatten, aber die Zukunft der modernen Photovoltaik prägen können“, resümiert Susanne Wagner, Expertin des Teams für die Charakterisierung von Ferroelektrika und ihrer Mikrostruktur.

Das Materialwissenschaftliche Zentrum für Energiesysteme (MZE) wurde vor drei Jahren als disziplinübergreifende Plattform eingeweiht, um die Forschung des KIT zur Energieumwandlung und -speicherung zu stärken. Damit ist das MZE das ideale Umfeld, um die Forschung an neuartigen Photovoltaik-Konzepten voranzutreiben. Auf der wissenschaftlichen Grundlage, für die der Erwin-Schrödinger-Preis verliehen wurde, wird das Team künftig neue ferroelektrische Verbindungen für eine verbesserte Energiegewinnung erforschen, wobei der Schwerpunkt auf umweltfreundlichen und nachhaltigen Lösungen liegt.

Diese Herausforderung wird auch im Helmholtz-Forschungsprogramm verankert. Nach 15 Jahren Forschung auf dem Gebiet der organischen Photovoltaik ergänzt das KIT dieses Feld seit einiger Zeit mit umfangreichen Forschungsarbeiten zu Perowskit-Solarzellen und darüber. Der Erwin-Schrödinger-Preis unterstreicht die führende Position des KIT in der Materialforschung zur photovoltaischen Energieumwandlung.

Die Forschung wurde von der Baden-Württemberg-Stiftung im Auftrag CT-9, dem Bundesministerium für Bildung und Forschung (BMBF) im Auftrag 03EK3571 und der Helmholtz-Gemeinschaft im Rahmen des Programms Science and Technology of Nanosystems (STN) gefördert.

Wissenschaftliche Publikationen
T. Leonhard, A.D. Schulz, H. Röhm, S. Wagner, F. Altermann, W. Rheinheimer, M.J. Hoffmann, A. Colsmann, Energy Technology, 2019, 7, 1800989
H. Röhm, T. Leonhard, A.D. Schulz, S. Wagner, M.J. Hoffmann, A. Colsmann, Adv. Mater., 2019, 31, 1806661
H. Röhm, T. Leonhard, M.J. Hoffmann, A. Colsmann, Energy Environ. Sci. 2017, 10, 950-955

Bildunterschrift: Verleihung des Erwin-Schrödinger-Preises auf der Jahrestagung der Helmholtz-Gemeinschaft: (v. li. n. re.) Otmar Wiestler (Präsident der Helmholtz-Gemeinschaft), Michael J. Hoffmann (Leiter des Instituts für keramische Werkstoffe und Technologien des KIT), Tobias Leonhard (Materialwissenschaftliches Zentrum für Energiesysteme, MZE, des KIT), Holger Röhm (MZE des KIT), Holger Hanselka (Präsident des KIT), Alexander Colsmann (Leiter Forschungsgruppe Organische Photovoltaik des KIT), Susanne Wagner (Institut für Angewandte Materialien - Keramische Werkstoffe und Technologien des KIT), Alexander D. Schulz (MZE des KIT), Kurt Bock (Vizepräsident des Stifterverbandes)

Bildunterschrift 01 & 02: Eine ausgeklügelte Charakterisierung auf der Nanoskala visualisiert mikroskopische elektrische Felder (ferroelektrische Domänen) in den Perowskit-Dünnschichten. (Bild: Alexander Colsmann, Holger Röhm, Tobias Leonhard, KIT)

Weiterer Kontakt:
Dr. Joachim Hoffmann, Redakteur/Pressereferent, Tel.: +49 721 608-21151, E-Mail: joachim.hoffmann@kit.edu


Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 25 100 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

Diese Presseinformation ist im Internet abrufbar unter: http://www.sek.kit.edu/presse.php

Wissenschaftliche Ansprechpartner:

Dr. Joachim Hoffmann, Redakteur/Pressereferent, Tel.: +49 721 608-21151, E-Mail: joachim.hoffmann@kit.edu

Originalpublikation:

T. Leonhard, A.D. Schulz, H. Röhm, S. Wagner, F. Altermann, W. Rheinheimer, M.J. Hoffmann, A. Colsmann, Energy Technology, 2019, 7, 1800989
H. Röhm, T. Leonhard, A.D. Schulz, S. Wagner, M.J. Hoffmann, A. Colsmann, Adv. Mater., 2019, 31, 1806661
H. Röhm, T. Leonhard, M.J. Hoffmann, A. Colsmann, Energy Environ. Sci. 2017, 10, 950-955

Weitere Informationen:

http://www.sek.kit.edu/presse.php
https://youtu.be/BHuACMdCuYc

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht AgiloBat: Batteriezellen flexibel produzieren
17.02.2020 | Karlsruher Institut für Technologie (KIT)

nachricht Innovative Power-to-Gas-Technologien für die Energiewende
11.02.2020 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics