Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energiespeicher der Zukunft erforschen und entwickeln

16.08.2012
Zentrum für Energie und Umweltchemie (CEEC) entsteht in Jena
Wer hat sich nicht schon geärgert, weil der „schwere“ Akku des Laptops nicht nur das Gewicht wesentlich erhöht, sondern auch gerade dann den Strom aufgibt, wenn man noch Wichtiges schreiben will? Als Nutzer träumt man dann von einem leichten Akku, der in kürzester Zeit wieder aufgeladen ist und danach das Gerät stundenlang mit Strom versorgt.

Damit dies nicht länger ein Traum bleibt, wird in Jena das deutschlandweit einzigartige Zentrum für Energie und Umweltchemie (Center for Energy and Environmental Chemistry Jena – CEEC Jena) entstehen. Die Politik hat gerade den Weg freigemacht und über 14 Mio. Euro zugesagt, damit das neue Forschungszentrum gebaut und eröffnet werden kann. Getragen wird es gemeinsam von der Friedrich-Schiller-Universität Jena (FSU) und dem Fraunhofer-Institut für Keramische Technologien und Systeme Hermsdorf/Dresden (IKTS). Dies sichert eine enge Verbindung von Grundlagen- und angewandter Forschung.

Keramische oder polymere Materialien für die Energiespeicherung, -erzeugung und für Umwelttechnologien

Die Jenaer Chemikerin Anke Teichler überwacht die Herstellung von Komponenten einer neuartigen Batterie auf Polymerbasis durch ein spezielles Printverfahren, wie sie auch am CEEC erforscht werden. Foto: Jan-Peter Kasper/FSU

Im CEEC Jena sollen keramische oder polymere Materialien für die Energiespeicherung, -erzeugung und für Umwelttechnologien entwickelt und entsprechende Prototypen gebaut werden. Dazu existiert bereits ein breites Know-how in 12 bis 15 Arbeitsgruppen der Universität und des Fraunhofer-Instituts, die nun unter dem Dach des CEEC verknüpft werden sollen. Hinzu kommen zwei neu eingerichtete Forschergruppen sowie eine von der Carl-Zeiss-Stiftung finanzierte Juniorprofessur für Elektrochemie, die bereits in Vorbereitung der Zentrumsgründung eingerichtet wurden.

„Das große gemeinsame Ziel der beiden Forschergruppen von FSU und ITKS ist die Entwicklung von neuen bzw. optimierten elektrischen Energiespeichern, die zukünftig eine risikoarme, klimafreundliche und nachhaltige Energieversorgung in verschiedenen Anwendungsfeldern ermöglichen“, fasst es Prof. Dr. Ulrich S. Schubert von der Uni Jena zusammen. Der Chemiker und Initiator des CEEC verweist außerdem auf „den interfakultativen Charakter des Zentrums, wodurch wir die notwendige Masse an wissenschaftlichem Know-how für so etwas Besonderes wie ein universitäres Zentrum erhalten“.

Forschungen an drei unterschiedliche Batterietypen

Im Mittelpunkt der aktuellen Energiespeicher-Forschungen am CEEC Jena stehen drei unterschiedliche Batterietypen: Organische Radikalbatterien, Redox-Flow-Batterien sowie Hochtemperatur-Batterien (u. a. Natrium-Schwefel-Batterien). Besonders die beiden letztgenannten Batterietypen sollen die Speicherung von großen Energiemengen ermöglichen, wie sie z. B. bei Windparks oder Solaranlagen entstehen. Das Ziel der Forschergruppen ist es, praktikable Lösungen für Redox-Flow-Batterien zu entwickeln, damit diese Systeme vermehrt einsatzfähig werden. „Bisher gibt es weltweit nur sehr wenige Beispiele für einen erfolgreichen Einsatz dieser Systeme – auf Grund des hohen Preises und weil die Langzeitstabilität noch fraglich ist“, sagt Dr. Martin Hager, Leiter der Forschergruppe „Neue polymere Materialien für effiziente Energiespeicher“ an der Uni Jena. Im Gegensatz dazu sind Organische Radikalbatterien Stromspeicher für geringere Energiemengen. Ein Vorzug dieser Systeme ist, dass dank innovativer Kunststoffe prinzipiell metallfreie Batterien gebaut werden können.
Ein Ziel ist hier die Entwicklung von neuen Elektrodenmaterialien, welche eine möglichst hohe Kapazität und Zellspannung ermöglichen sollen. Ergänzt werden die Arbeiten der Forschergruppe u. a. durch Entwicklungen am Institut für Organische Chemie und Makromolekulare Chemie der FSU, wo momentan polymere Materialien für die organische Radikalbatterie entwickelt werden. Diese Polymere erlauben es u. a., Batterien drucktechnisch herzustellen. Weiterhin wird daran gearbeitet Batterien produzieren zu können, welche nur organische Aktivmaterialien enthalten. Auf diese Weise können fast metallfreie Batterien aufgebaut werden. „Giftige umweltgefährdende Metalle können somit perspektivisch komplett ersetzt werden“, betont Chemiker Hager.

Forschungen zu Hochtemperaturbatterien und Kohlenstoffnanoschichten
Am Fraunhofer-Institut in Hermsdorf wurden bereits Forschungen auf den Themengebieten Hochtemperaturbatterien und Kohlenstoffnanoschichten gestartet, jeweils für stationäre Anwendungen. Die Forschergruppe „Neue keramische Materialien für effiziente Energiespeicher“ des IKTS wird sich primär auf industrielle Stromspeicher fokussieren, die auf keramischen Prinzipien beruhen. „Dies sichert eine nahezu europaweite Alleinstellungsposition“, sagt der Leiter Dr. Michael Stelter. „Es wurde in den letzten Monaten zunächst die Fähigkeit hergestellt, innovative keramische Elektrolyte aus den Grundbestandteilen zu synthetisieren bzw. aus kommerziellen Materialien herzustellen und zweifelsfrei zu befunden“, so Stelter weiter.
„Beides ist gelungen.“ Das IKTS kann – zunächst im Labormaßstab – eigene Materialien herstellen. Weiterhin wurden Verfahren und Hardware entwickelt, um eigene Hochtemperaturbatterien zu bauen und zu testen. „Somit ist die Forschergruppe bereits in der Lage, das komplette elektrochemische System Batterie im Labormaßstab abzubilden“, sagt Stelter. Als nächste Schritte sind geplant: die Batterien schrittweise auf die Größe eines Milchkartons pro Einzelzelle zu verkleinern. Weiterhin wird die Chemie der Batterien fortentwickelt. Die Hermsdorfer Wissenschaftler wollen v. a. die Prozesse des schleichenden Leistungsverlustes verstehen, der die Lebensdauer der Batterie reduziert. Es wird in den kommenden Jahren ein Ziel von ca. 100.000 Stunden Lebensdauer pro Zelle angestrebt.

Ergänzt werden die Untersuchungen durch die Forschungen von Prof. Dr. Anna Ignaszak. Sie hat seit Mai die Juniorprofessur für Elektrochemie funktionaler Materialien an der FSU inne und wird sich neben der Elektrochemie von organischen Polymeren und der Optimierung von Elektrodenmaterialien zukünftig auch Brennstoffzellen widmen.

Neubau kommt

Noch arbeiten die Forscher an verschiedenen Standorten, bis als zweiter Schritt der Zentrumsbildung ein Forschungsneubau für das CEEC Jena am Jenaer Max-Wien-Platz errichtet ist. Mit 14,4 Millionen Euro – inklusive Erstausstattung und Geräten – werden dort Forschungsflächen von über 1.200 qm entstehen. Unmittelbar an das noch im Bau befindliche „Zentrum für angewandte Forschung“ (ZAF) der Universität wird der Neubau des CEEC „angedockt“. Die Ernst-Abbe-Stiftung trägt bis zu 10 Millionen Euro. Diese Mittel stammen aus Zustiftungen des Landes an die Ernst-Abbe-Stiftung. Weitere vier Millionen Euro wird die Carl-Zeiss-Stiftung beisteuern. Die Kosten für die Erstausstattung in Höhe von rund 400.000 Euro werden aus Landesmitteln getragen. Darüber hinaus bringt das Land das Grundstück ein. „Die durch den Neubau ermöglichten Synergien sind – auch mit Blick auf die Kosten – überzeugend“, ist sich Prof. Schubert sicher, der darauf hofft, im Sommer 2015 einziehen zu können.
Doch bis dahin sind noch zahlreiche weitere Schritte notwendig auf dem Weg zum CEEC und nicht zuletzt erfolgreiche Forschungen, damit dem Laptop in Zukunft nicht gerade dann der Strom ausgeht, bevor die wichtige Idee fixiert wurde.

Kontakt:
Prof. Dr. Ulrich S. Schubert
Institut für Organische Chemie und Makromolekulare Chemie (IOMC) der Universität Jena
Humboldtstr. 10, 07743 Jena
Tel.: 03641 / 948201
E-Mail: ulrich.schubert[at]uni-jena.de

Dr. Michael Stelter
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS
Michael-Faraday-Str.1, 07629 Hermsdorf
Tel.: 036601 / 93013031
E-Mail: michael.stelter[at]ikts.fraunhofer.de

Axel Burchardt | idw
Weitere Informationen:
http://www.uni-jena.de/
http://www.ikts.fraunhofer.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Vernetzte Beleuchtung: Weg mit dem blinden Fleck
18.07.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie
17.07.2018 | Karlsruher Institut für Technologie (KIT)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics