Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronenspins für die Transistortechnologie: Forscher weisen ballistische „Spinverstärkung“ nach

12.12.2014

Die Nachfrage nach immer besseren Transistoren ist riesig. Weltweit arbeitet man daher an neuen Konzepten, um die Leistungsfähigkeit von Halbleiterbauelementen zu verbessern.

Hoffnungen ruhen auf der Entwicklung einer Spinelektronik, bei der man den Eigendrehimpuls von Elektronen (Elektronenspin) zusätzlich zu deren elektrischer Ladung nutzt. Bislang war es aber nicht möglich, die Elektronenspins wirkungsvoll in ein zwei-dimensionales Elektronengas – Herzstück der modernsten Transistortechnologien – zu injizieren. Physikern der Universität Regensburg ist dies nun erstmals gelungen. Mit überraschendem Ergebnis: Die Effizienz lag noch um ein Vielfaches höher als von der Theorie vorhergesagt.


Die ferromagnetischen (FM) Injektor- und Detektorkontakte sind mit Pfeilen markiert. Durch einen der ferromagnetischen Kontakte fließt ein Strom I und injiziert in das Elektronengas einen Spinstrom.

Bildnachweis: Universität Regensburg – Zur ausschließlichen Verwendung im Rahmen der Berichterstattung zu dieser Pressemitteilung.

In herkömmlichen Transistoren nutzt man ausschließlich die Ladung von Elektronen, um den Stromfluss zu kontrollieren und auf diese Weise logische Operationen auszuführen. In der Spinelektronik versucht man auch den Elektronenspin zu nutzen, indem man die entsprechenden Eigenschaften der Elektronen manipuliert.

Der Elektronenspin kann als Pirouette des Elementarteilchens um die eigene Achse verstanden werden, wobei die Bewegung mit einem magnetischen Moment verknüpft ist. Demnach weist das Elektron Eigenschaften ähnlich einer Kompassnadel auf. Zudem orientiert sich diese winzige Version einer Kompassnadel nur entweder parallel (spin-up) oder anti-parallel (spin-down) zu einem extern angelegten Magnetfeld.

Um diesen quantenmechanischen Effekt in nichtmagnetischen elektrischen Bauelementen einsetzen zu können, müssen die Elektronenspins zunächst einmal eingebracht werden. Dies geschieht beispielsweise durch einen elektrischen Strom, der durch zwei ferro-magnetische Kontakte in den Halbleiter fließt und dadurch mehr Spins der einen als der anderen Sorte (spin-up oder spin-down) in den Halbleiter injiziert: Ein Spinstrom fließt somit im Halbleiter.

Von einer effizienten Nutzung in Transistoren war man bislang allerdings noch entfernt. Hierfür müssen die Elektronenspins in ein zwei-dimensionales Elektronengas injiziert werden. Solche Elektronengase, deren Ladungsträgerdichte über eine Gateelektrode gesteuert werden kann (Feldeffekt), sind das Herzstück der CMOS (complimentary metal oxide semiconductor) Transistortechnologie; heutzutage die meistgenutzte Technik für integrierte Schaltkreise.

Regensburger Forschern um Dr. Mariusz Ciorga, Prof. Dr. Dominiqe Bougeard und Prof. Dr. Dieter Weiss gelang es, Elektronenspins mit hoher Effizienz in ein zweidimensionales Elektronengas in einer Galliumarsenid-Halbleiterschichtstruktur einzubringen. Sie konnten in ihren Experimenten die Spininjektion mit Hilfe einer angelegten Spannung steuern. Diese war maximal, wenn Elektronen aus einem ferromagnetischen Kontakt direkt in den zweidimensionalen Kanal injiziert werden konnten und nicht vorher zwischen Gate und Kanal „hängenbleiben“.

Die Ursache für diesen Verstärkungseffekt hängt nach Ansicht der Forscher mit der ballistischen Bewegung der Elektronen im Bereich der Injektionsstelle zusammen. Die Elektronen bewegten sich unter den experimentellen Bedingungen eher wie Kugeln in einem Flipperautomaten, also ballistisch, und nicht – wie bislang angenommen – diffusiv, wie zum Beispiel ein Tropfen Milch im Kaffee. Der Nachweis der ballistischen „Spinverstärkung“ ist ein weiterer wichtiger Schritt hin zur Nutzung des Elektronenspins für zukünftige Technologien

Die Ergebnisse der Regensburger Forscher sind vor Kurzem in der renommierten Fachzeitschrift „Physical Review Letters“ erschienen.

Titel des Original-Aufsatzes:
Electrical Spin Injection into High Mobility 2D Systems, in: Phys. Rev. Lett. 113, 236602 (2014); featured in Physics 7, 123 (2014), Viewpoints
DOI: 10.1103/PhysRevLett.113.236602

Ansprechpartner für Medienvertreter:
Prof. Dr. Dieter Weiss
Universität Regensburg
Institut für Experimentelle und angewandte Physik
Tel.: 0941 943-3198
Dieter.Weiss@physik.uni-regensburg.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Fit für die industrielle Fertigung? Aluminium-Batterien im Fokus des Verbundvorhabens „ProBaSol“ an der TU Freiberg
21.02.2020 | Technische Universität Bergakademie Freiberg

nachricht Haben ein Auge für Farben: druckbare Lichtsensoren
19.02.2020 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics