Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrische Felder steuern Nano-Maschinen 100.000-mal schneller als herkömmliche Methoden

19.01.2018

Wissenschaftler der Technischen Universität München (TUM) haben eine neue, elektrische Antriebstechnik für Nano-Roboter entwickelt. Mit dieser lassen sich molekulare Maschinen Hunderttausendmal schneller bewegen als mit den bisher genutzten biochemischen Prozessen. Damit werden Nano-Roboter schnell genug für die Fließbandarbeit in molekularen Fabriken. Die neuen Forschungsergebnisse erscheinen am 19. Januar als Coverstory in der renommierten Fachzeitschrift Science.

Auf, ab, auf, ab. Im Gleichtakt schwingen die Lichtpunkte hin und her. Erzeugt werden sie von leuchtenden Molekülen, die an der Spitze winziger Roboterarme fixiert sind. Am Monitor des Fluoreszenzmikroskops verfolgt Prof. Friedrich Simmel die Bewegung der Nano-Maschinen. Ein Mausklick genügt, um die Lichtpunkte in eine andere Richtung wandern zu lassen.


Elektrische Felder steuern den rotierenden Nano-Kran – 100.000-mal schneller als bisherige Methoden.

Enzo Kopperger / TUM


Rotation des Nano-Arms zwischen zwei Andock-Punkten (rot und blau).

Enzo Kopperger / TUM

„Durch Anlegen elektrischer Felder können wir die Arme beliebig in der Ebene drehen,“ erklärt der Inhaber des Lehrstuhls für Physik Synthetischer Biologischer Systeme an der TU München. Seinem Team ist es erstmals gelungen Nano-Roboter elektrisch zu steuern und auch gleich einen Rekord aufzustellen: Die neue Antriebstechnik ist 100 000-mal schneller ist als alle bisherigen Methoden.

DNA-Origami-Roboter für die Fertigung der Zukunft

Weltweit arbeiten Wissenschaftler an neuen Technologien für die Nano-Fabriken der Zukunft. In denen sollen eines Tages wie am Fließband biochemische Proben analysiert oder medizinische Wirkstoffe hergestellt werden. Die dafür notwendigen Miniatur-Maschinen lassen sich bereits kostengünstig mit Hilfe der DNA-Origami-Technik herstellen.

Dass diese molekularen Maschinen nicht längst im großen Maßstab genutzt werden, liegt daran, dass sie bisher nur sehr langsam arbeiten. Durch Zugabe von Enzymen, DNA-Strängen oder mit Hilfe von Licht werden die Bausteine aktiviert und können bestimmte Aufgaben ausführen, beispielsweise Moleküle aufnehmen und transportieren.

Für die Ausführung solcher Aktionen benötigen herkömmliche Nano-Roboter allerdings Minuten, manchmal auch Stunden. Eine effiziente molekulare Fließbandarbeit lässt sich mit diesen Methoden kaum realisieren.

Elektronik macht schnell

„Um nanotechnische Produktionslinien aufzubauen, braucht man eine andere Antriebstechnik. Unsere Idee war es, auf das biochemische Schalten der Nano-Maschinen völlig zu verzichten und stattdessen die Wechselwirkung der DNA-Strukturen mit elektrischen Feldern zu nutzen“, erklärt der TUM-Forscher Simmel, der auch Co-Koordinator des Exzellenz-Clusters Nanosystems Initiative München (NIM) ist.

Das Prinzip hinter der neuen Antriebstechnik ist einfach: DNA-Moleküle enthalten negative Ladungen. Durch Anlegen elektrischer Felder lassen sich die Biomoleküle daher bewegen. Theoretisch ist es damit möglich, Nano-Roboter aus DNA mit Hilfe von Stromimpulsen zu steuern.

Roboterbewegung unterm Mikroskop

Um herauszufinden, ob und wie schnell sich die Roboterarme parallel zu einem elektrischen Feld ausrichten, fixierten die Forscher Nano-Roboterarme auf einem Glasträger und platzierten diesen in einen speziell dafür entwickelten Probenhalter mit elektrischen Kontakten.

Jede einzelne der von Erstautor Enzo Kopperger gefertigten Miniatur-Maschinen besteht aus einer starren Grundplatte von 55 mal 55 Nanometern, auf der sich, verbunden durch ein flexibles Gelenk aus ungepaarten Basen, ein 400 Nanometer langer Arm befindet. Der Aufbau sorgt dafür, dass sich der Arm in der Horizontalen beliebig drehen kann.

In Kooperation mit Fluoreszenz-Spezialisten um Prof. Don Lamb von der Ludwig-Maximilians-Universität LMU markierten die Forscher die Spitzen der Roboterarme mit Farbstoffmolekülen. Deren Bewegung verfolgten sie mit einem Fluoreszenz-Mikroskop. Computergesteuert änderten sie die Richtung des elektrischen Feldes. Auf diese Weise konnten die Forscher die Orientierung der Arme beliebig einstellen und Bewegungsvorgänge vorgegeben.

„Das Experiment hat gezeigt, dass sich molekulare Maschinen elektrisch bewegen und folglich auch antreiben lassen“, sagt Simmel. „Dank der elektronischen Steuerung können wir Bewegungen im Millisekunden-Takt ausführen und sind damit 100.000 Mal schneller als bisherige biochemische Antriebe.“

Auf dem Weg zur Nano-Fabrik

Die neue Steuerungstechnik eignet sich nicht nur, um Farbstoffe oder Nano-Partikel hin- und herzubewegen. Die Arme der Miniatur-Roboter können auch Kräfte auf Moleküle ausüben. Diese Wechselwirkung lässt sich beispielsweise für die Diagnostik und für die Pharmaentwicklung nutzen, betont Simmel: „Nano-Roboter sind klein und preiswert. Millionen von ihnen könnten gleichzeitig arbeiten, um in einer Probe nach bestimmten Stoffen zu suchen oder um Schritt für Schritt – wie am Fließband – komplizierte Moleküle zu synthetisieren.“


Die Arbeit wurde gefördert durch den Sonderforschungsbereich SFB 1032 „Nanoagents“ der Deutschen Forschungsgemeinschaft und die International Graduate School of Science and Engineering der TUM sowie das Center for Nano Science und das BioImaging Network der Ludwig-Maximilians-Universität München.

Publikation:

E. Kopperger, J. List, S. Madhira, F. Rothfischer, D. C. Lamb, F. C. Simmel, A self-assembled nanoscale robotic arm controlled by electric fields, Science, 19. Jan. 2018.

Kontakt:

Prof. Dr. Friedrich C. Simmel
Technische Universität München
Physik Synthetischer Biologischer Systeme
Am Coulombwall 4a, 85748 Garching, Germany
Tel: +49 89 289 11610 – E-Mail: simmel@tum.de

Weitere Informationen:

http://www.e14.ph.tum.de/en/home/ Website der Arbeitsgruppe
http://science.sciencemag.org/content/359/6373/296/tab-figures-data Videomaterial (am Seitenende)
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34360/ Massenproduktion DNA-Origami
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34408/ Presseinformation auf der TUM-Website

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Daten „fühlen“ mit haptischen Displays
15.11.2018 | Karlsruher Institut für Technologie

nachricht Ein magnetisches Gedächtnis für den Computer
12.11.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics