Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrische Felder steuern Nano-Maschinen 100.000-mal schneller als herkömmliche Methoden

19.01.2018

Wissenschaftler der Technischen Universität München (TUM) haben eine neue, elektrische Antriebstechnik für Nano-Roboter entwickelt. Mit dieser lassen sich molekulare Maschinen Hunderttausendmal schneller bewegen als mit den bisher genutzten biochemischen Prozessen. Damit werden Nano-Roboter schnell genug für die Fließbandarbeit in molekularen Fabriken. Die neuen Forschungsergebnisse erscheinen am 19. Januar als Coverstory in der renommierten Fachzeitschrift Science.

Auf, ab, auf, ab. Im Gleichtakt schwingen die Lichtpunkte hin und her. Erzeugt werden sie von leuchtenden Molekülen, die an der Spitze winziger Roboterarme fixiert sind. Am Monitor des Fluoreszenzmikroskops verfolgt Prof. Friedrich Simmel die Bewegung der Nano-Maschinen. Ein Mausklick genügt, um die Lichtpunkte in eine andere Richtung wandern zu lassen.


Elektrische Felder steuern den rotierenden Nano-Kran – 100.000-mal schneller als bisherige Methoden.

Enzo Kopperger / TUM


Rotation des Nano-Arms zwischen zwei Andock-Punkten (rot und blau).

Enzo Kopperger / TUM

„Durch Anlegen elektrischer Felder können wir die Arme beliebig in der Ebene drehen,“ erklärt der Inhaber des Lehrstuhls für Physik Synthetischer Biologischer Systeme an der TU München. Seinem Team ist es erstmals gelungen Nano-Roboter elektrisch zu steuern und auch gleich einen Rekord aufzustellen: Die neue Antriebstechnik ist 100 000-mal schneller ist als alle bisherigen Methoden.

DNA-Origami-Roboter für die Fertigung der Zukunft

Weltweit arbeiten Wissenschaftler an neuen Technologien für die Nano-Fabriken der Zukunft. In denen sollen eines Tages wie am Fließband biochemische Proben analysiert oder medizinische Wirkstoffe hergestellt werden. Die dafür notwendigen Miniatur-Maschinen lassen sich bereits kostengünstig mit Hilfe der DNA-Origami-Technik herstellen.

Dass diese molekularen Maschinen nicht längst im großen Maßstab genutzt werden, liegt daran, dass sie bisher nur sehr langsam arbeiten. Durch Zugabe von Enzymen, DNA-Strängen oder mit Hilfe von Licht werden die Bausteine aktiviert und können bestimmte Aufgaben ausführen, beispielsweise Moleküle aufnehmen und transportieren.

Für die Ausführung solcher Aktionen benötigen herkömmliche Nano-Roboter allerdings Minuten, manchmal auch Stunden. Eine effiziente molekulare Fließbandarbeit lässt sich mit diesen Methoden kaum realisieren.

Elektronik macht schnell

„Um nanotechnische Produktionslinien aufzubauen, braucht man eine andere Antriebstechnik. Unsere Idee war es, auf das biochemische Schalten der Nano-Maschinen völlig zu verzichten und stattdessen die Wechselwirkung der DNA-Strukturen mit elektrischen Feldern zu nutzen“, erklärt der TUM-Forscher Simmel, der auch Co-Koordinator des Exzellenz-Clusters Nanosystems Initiative München (NIM) ist.

Das Prinzip hinter der neuen Antriebstechnik ist einfach: DNA-Moleküle enthalten negative Ladungen. Durch Anlegen elektrischer Felder lassen sich die Biomoleküle daher bewegen. Theoretisch ist es damit möglich, Nano-Roboter aus DNA mit Hilfe von Stromimpulsen zu steuern.

Roboterbewegung unterm Mikroskop

Um herauszufinden, ob und wie schnell sich die Roboterarme parallel zu einem elektrischen Feld ausrichten, fixierten die Forscher Nano-Roboterarme auf einem Glasträger und platzierten diesen in einen speziell dafür entwickelten Probenhalter mit elektrischen Kontakten.

Jede einzelne der von Erstautor Enzo Kopperger gefertigten Miniatur-Maschinen besteht aus einer starren Grundplatte von 55 mal 55 Nanometern, auf der sich, verbunden durch ein flexibles Gelenk aus ungepaarten Basen, ein 400 Nanometer langer Arm befindet. Der Aufbau sorgt dafür, dass sich der Arm in der Horizontalen beliebig drehen kann.

In Kooperation mit Fluoreszenz-Spezialisten um Prof. Don Lamb von der Ludwig-Maximilians-Universität LMU markierten die Forscher die Spitzen der Roboterarme mit Farbstoffmolekülen. Deren Bewegung verfolgten sie mit einem Fluoreszenz-Mikroskop. Computergesteuert änderten sie die Richtung des elektrischen Feldes. Auf diese Weise konnten die Forscher die Orientierung der Arme beliebig einstellen und Bewegungsvorgänge vorgegeben.

„Das Experiment hat gezeigt, dass sich molekulare Maschinen elektrisch bewegen und folglich auch antreiben lassen“, sagt Simmel. „Dank der elektronischen Steuerung können wir Bewegungen im Millisekunden-Takt ausführen und sind damit 100.000 Mal schneller als bisherige biochemische Antriebe.“

Auf dem Weg zur Nano-Fabrik

Die neue Steuerungstechnik eignet sich nicht nur, um Farbstoffe oder Nano-Partikel hin- und herzubewegen. Die Arme der Miniatur-Roboter können auch Kräfte auf Moleküle ausüben. Diese Wechselwirkung lässt sich beispielsweise für die Diagnostik und für die Pharmaentwicklung nutzen, betont Simmel: „Nano-Roboter sind klein und preiswert. Millionen von ihnen könnten gleichzeitig arbeiten, um in einer Probe nach bestimmten Stoffen zu suchen oder um Schritt für Schritt – wie am Fließband – komplizierte Moleküle zu synthetisieren.“


Die Arbeit wurde gefördert durch den Sonderforschungsbereich SFB 1032 „Nanoagents“ der Deutschen Forschungsgemeinschaft und die International Graduate School of Science and Engineering der TUM sowie das Center for Nano Science und das BioImaging Network der Ludwig-Maximilians-Universität München.

Publikation:

E. Kopperger, J. List, S. Madhira, F. Rothfischer, D. C. Lamb, F. C. Simmel, A self-assembled nanoscale robotic arm controlled by electric fields, Science, 19. Jan. 2018.

Kontakt:

Prof. Dr. Friedrich C. Simmel
Technische Universität München
Physik Synthetischer Biologischer Systeme
Am Coulombwall 4a, 85748 Garching, Germany
Tel: +49 89 289 11610 – E-Mail: simmel@tum.de

Weitere Informationen:

http://www.e14.ph.tum.de/en/home/ Website der Arbeitsgruppe
http://science.sciencemag.org/content/359/6373/296/tab-figures-data Videomaterial (am Seitenende)
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34360/ Massenproduktion DNA-Origami
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34408/ Presseinformation auf der TUM-Website

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?
10.07.2020 | Technische Universität Ilmenau

nachricht KIT forscht in vier neuen Batterie-Kompetenzclustern
09.07.2020 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics