Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelne Ionen in Festkörper platziert

12.09.2019

Eine neue Technik ermöglicht es, einzelne Ionen mit einer Genauigkeit von 35 Nanometern in einen Kristall einzubauen

Dotierte Halbleiter sind die Grundlage jeder modernen Elektronik. Um elektronische Bauelemente herzustellen, werden hochreine Siliziumkristalle mit Dotierungsatomen wie zum Beispiel Aluminium oder Phosphor versetzt. Dadurch kann die Leitfähigkeit maßgeschneidert werden.


Schematische Darstellung der Ionenfalle (links) als Quelle eines Ionenstrahls, um im Kristall (rechts) eine gewünschte Anordnung der Farbzentren einzuschreiben.

Abb./©: QUANTUM, Institut für Physik, JGU

In modernen, auf wenige Nanometer miniaturisierten elektronischen Computerprozessoren sind nur noch die Elektronen von weniger als zehn Dotieratomen für die Schaltprozesse zuständig. Noch einen Schritt weiter gehen Quantenbauelemente, bei denen nur einzelne Dotieratome in einem hochreinen Kristall für neuartige Quantencomputer oder Quantensimulatoren genutzt werden sollen.

Forscher der Johannes Gutenberg-Universität Mainz (JGU) um Prof. Dr. Ferdinand Schmidt-Kaler haben eine Methode entwickelt, um genau abgezählte, einzelne Dotierungsionen in einen Festkörperkristall zu platzieren. In den Experimenten wurde das Seltene-Erden-Element Praseodym in einen Yttrium-Aluminium-Granatkristall eingeschossen.

Diese Kristalle wurden anschließend in Zusammenarbeit mit Forschern der Gruppe um Prof. Dr. Jörg Wrachtrup an der Universität Stuttgart in einem hochauflösenden konfokalen Mikroskop untersucht.

Dabei konnte eine Positionierungsgenauigkeit von 35 Nanometern ermittelt werden. Diese Genauigkeit erlaubt es im Prinzip schon jetzt, Anordnungen von Dotierungsionen für Bauelemente eines zukünftigen Quantenprozessors zu schreiben.

Die Ergebnisse wurden als Highlight im aktuellen Band des internationalen Journals Physical Review Letters publiziert und stellen eine wichtige Innovation mit weitem Anwendungspotenzial dar, denn die Methode kann auf andere Kristalle und Dotierungsatome erweitert werden.

Bildmaterial:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_dotieratome.jpg
Schematische Darstellung der Ionenfalle (links) als Quelle eines Ionenstrahls, um im Kristall (rechts) eine gewünschte Anordnung der Farbzentren einzuschreiben.
Abb./©: QUANTUM, Institut für Physik, JGU

Weiterführende Links:
https://physics.aps.org/synopsis-for/10.1103/PhysRevLett.123.106802 - Übersichtsbeitrag im Onlinemagazin Physics
https://www.quantenbit.physik.uni-mainz.de/ - Quantenbit AG an der JGU

Lesen Sie mehr:
http://www.uni-mainz.de/presse/aktuell/9312_DEU_HTML.php - Pressemitteilung „Wärmekraftmaschinen in der Mikrowelt“ (23.08.2019)
http://www.uni-mainz.de/presse/75073.php - Pressemitteilung „Physiker bauen kleinste Wärmekraftmaschine der Welt“ (15.04.2016)
http://www.uni-mainz.de/presse/59213.php - Pressemitteilung „Mainzer Physiker bauen ersten Prototyp einer Ein-Ionen-Wärmekraftmaschine“ (23.01.2014)

Wissenschaftliche Ansprechpartner:

Prof. Dr. Ferdinand Schmidt-Kaler
Quanten-, Atom- und Neutronenphysik (QUANTUM)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-26234
E-Mail: fsk@uni-mainz.de
https://www.quantenbit.physik.uni-mainz.de/fsk/

Originalpublikation:

Karin Groot-Berning et al.
Deterministic Single-Ion Implantation of Rare-Earth Ions for Nanometer-Resolution Color-Center Generation
Physical Review Letters, 4. September 2019
DOI: 10.1103/PhysRevLett.123.106802
https://doi.org/10.1103/PhysRevLett.123.106802

Petra Giegerich | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-mainz.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Ferroelektrizität verbessert Perowskit-Solarzellen
20.09.2019 | Karlsruher Institut für Technologie

nachricht Flüssigkristalline „Stromkabel“
19.09.2019 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics