Durchbruch in Solarzellenentwicklung – Strom aus ultraleichten Nanodrähten

Herkömmliche Solarzellen, wie man sie von vielen Dächern kennt, bestehen aus zwei Schichten, von denen eine – vereinfacht ausgedrückt – negativ geladen ist, die andere positiv. An der Grenzfläche zwischen diesen Schichten wird die Energie der Sonnenstrahlen absorbiert und in Strom umgewandelt.

Die Wandlung von Sonnenlicht in Strom geschieht dabei auf einer Strecke von etwa einem Hundertstel Millimeter, in der Nanotechnologie ein halber Marathon. Das bedeutet immensen Materialverbrauch, hohes Gewicht und schließlich hohe Kosten. Tauscht man das klassische Solarzellenmaterial Silizium gegen Galliumarsenid aus, wird die Strecke um den Faktor 100 reduziert.

In der Arbeitsgruppe von CENIDE-Professor Franz-Josef Tegude beschäftigt sich Christoph Gutsche während seiner Promotion mit neuartigen Solarzellen im winzigsten Maßstab: Es geht um Nanodrähte aus Galliumarsenid, die an ein menschliches Haar erinnern, aber einen tausendfach kleineren Durchmesser aufweisen. Im Gegensatz zu den klassischen Schichtsystemen, die nur rund 60 Prozent des Sonnenlichts einfangen können, absorbieren dicht an dicht stehende Nanodrähte mehr als 90 Prozent der einfallenden Strahlung. Zudem bestehen Gutsches Drähte aus einem negativ geladenen Kern und einer positiv geladenen Hülle, so dass das Verhältnis zwischen Platzbedarf und der zur Stromerzeugung benötigten Grenzfläche deutlich größer ist als bei den Schichtsystemen. Dies macht die Nanodrähte zu potenziellen Kandidaten für wirtschaftlich wettbewerbsfähige Anwendungen, bei denen ein geringes Gewicht erwünscht ist, beispielsweise in der Raumfahrt.

Um den erzeugten Strom an den Drähten abführen zu können, muss je ein elektrischer Kontakt am Kern und an der Hülle anliegen. Und genau hier lag bisher das Problem derartiger Kern-Hülle-Nanodrähte: Innen wie außen bestehen sie aus Galliumarsenid, der Kern hat einen Durchmesser von 100 Nanometern (nm), mit Hülle messen sie 270 nm im Querschnitt. Den Wachstumsprozess kann man zwar in gewissen Grenzen beeinflussen, nicht aber so, dass z.B. ein Stück Kern aus der Hülle herausragen würde.

Wie kontaktiert man also exakt Kern- und Hüllenoberfläche? Gutsches Idee dazu ist so einfach wie genial. Zwischen Kern und Hülle hat er eine Zwischenschicht eingebaut: Mit Phosphorsäure löst er die äußere Hülle ab, mit Salzsäure die Zwischenhülle. Beide Säuren ätzen selektiv, sodass der Ablösungsprozess jeweils automatisch am Beginn der neuen Schicht stoppt. „Mit dieser Methode können wir auch Schwankungen bei der Herstellung ausgleichen“, erklärt Gutsche. „Wir können tausende Drähte gleichzeitig und vorsichtshalber etwas länger ätzen. An der Schichtgrenze stoppt der Prozess ohnehin.“

Mithilfe dieser Methode haben es die CENIDE-Wissenschaftler als Erste geschafft, einen radialen (von Kern zu Hülle) Nanodraht gezielt und im großen Maßstab reproduzierbar zu kontaktieren und für die Stromerzeugung aus Sonnenlicht zu nutzen.

DOI: 10.1002/adfm.201101759

Redaktion: Birte Vierjahn, Tel. 0203/379-1456, birte.vierjahn@uni-due.de

Media Contact

Katrin Koster idw

Weitere Informationen:

http://www.uni-due.de

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Uranimmobilisierende Bakterien im Tongestein

Mikrobielle Reduktion verringert Mobilität von Uranverbindungen. Bei der Konzeption von Endlagern für hochradioaktive Abfälle in tiefen geologischen Schichten müssen verschiedene Faktoren sorgfältig berücksichtigt werden, um ihre langfristige Sicherheit zu gewährleisten….

Erstmals 6G-Mobilfunk in Alpen getestet

Forschende der Universität Stuttgart erzielen leistungsstärkste Verbindung. Notrufe selbst in entlegenen Gegenden absetzen und dabei hohe Datenmengen in Echtzeit übertragen? Das soll möglich werden mit der sechsten Mobilfunkgeneration – kurz…

Neues Sensornetzwerk registriert ungewöhnliches Schwarmbeben im Vogtland

Das soeben fertig installierte Überwachungsnetz aus seismischen Sensoren in Bohrlöchern zeichnete Tausende Erdbebensignale auf – ein einzigartiger Datensatz zur Erforschung der Ursache von Schwarmbeben. Seit dem 20. März registriert ein…

Partner & Förderer