Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Tandem-Solarzelle kann‘s einfach besser

19.11.2015

Zwei Solarzellen übereinander bringen Vorteile: Ein grösserer Anteil des Sonnenlichts kann in Strom umgewandelt werden, weil die Energie in zwei Stufen «geerntet» wird. Empa-Forscher haben ein Verfahren entwickelt, das solche Tandem-Solarzellen in preisgünstiger Roll-to-Roll-Produktion möglich macht. Das schonende Produktionsverfahren geht bei nur 50 Grad Celsius vonstatten.

Was bei Doppelklingenrasierern gut ist, gilt auch für Solarzellen: zwei Arbeitsschritte sind gründlicher. Wenn man zwei Solarzellen übereinander legt, von denen eine halb transparent ist, dann lässt sich ein grösserer Anteil der Lichtenergie in Strom umwandeln. Bislang wurde die aufwändige Technik vorwiegend in der Raumfahrt eingesetzt.


Die halbtransparente Perowskit-Solarzelle absorbiert UV-Licht und blaues sichtbares Licht. Rotlicht und Infrarot-Strahlung lässt sie durch. Auf dieser Basis lässt sich eine zweistufige «Tandem-Solarzelle» bauen, deren Wirkungsgrad weit höher liegt als bei einstufigen Solarzellen. (Foto: Empa)

Für die Massenproduktion waren sogenannte Tandem-Zellen zu teuer. Ein Empa-Team um Stephan Bücheler und Ayodhya N. Tiwari vom Labor für Dünnschicht und Photovoltaik hat es nun geschafft, eine preisgünstige Tandem-Solarzelle herzustellen, die sich auf flexible Kunststofffolien auftragen lässt. Ein wichtiger Meilenstein zur Massenproduktion hoch effizienter Solarzellen ist damit erreicht.

Der Clou an dem neuen Verfahren: Die Forscher erzeugen die zusätzliche Solarzellenschicht in einem Niedrigtemperaturverfahren bei nur 50 Grad Celsius. Das verspricht für künftige Herstellungsprozesse einen Energie und Kosten sparenden Produktionsschritt.

Auf Anhieb erreichte die Tandem-Solarzelle einen Wirkungsgrad von 20.5 Prozent bei der Umwandlung von Licht in Strom. Sie liegt damit auf Augenhöhe mit den besten bisher produzierten flexiblen Solarzellen der Welt. Dabei ist ihr Potential noch längst nicht ausgeschöpft, wie die Empa-Forscher betonen.

Molekulare Fussbälle als Unterlage für den Zauberkristall

Der Schlüssel zu dem Doppel-Erfolg war die Entwicklung einer halbtransparenten Solarzelle aus Methyl-ammonium-Bleiiodid, das sich in Form winziger Perowskit-Kristalle abscheidet. Als Unterlage für den Perowskit dient eine Substanz mit dem Kürzel PCBM (Phenyl-C61-Buttersäure-Methylester). Jedes Molekül PCBM enthält 61 Kohlenstoff-Atome, die in Form eines Fussballs miteinander verknüpft sind. Auf diese Fussballschicht wird sozusagen «lauwarm» der Perowskit aufgedampft.

Dieser Zauberkristall schluckt UV-Strahlen und den blauen Anteil des sichtbaren Lichts und verwandelt diese in Strom. Rotes Licht und Infrarot-Strahlung lässt der Kristall jedoch passieren. So können die Forscher unter der halbtransparenten Perowskit-Zelle eine weitere Solarzelle anordnen, die das restliche Licht in Elektrizität umwandelt.

Vorteil der zweistufigen Zelle: bessere Nutzung des Sonnenlicht-Spektrums

Als untere Schicht der Tandem-Solarzelle dient den Empa-Forschern eine CIGS-Zelle (Kupfer-Indium-Gallium-Diselenid) – eine Technik, an der das Team bereits seit Jahren forscht.

Auf Basis der CIGS-Zellen läuft bereits eine Kleinserien-Produktion für flexible Solarzellen (s. Empa-Medienmitteilung vom 11. Juni 2015). Der Vorteil von Tandem-Solarzellen liegt in der besseren Ausnutzung des Sonnenlichts.

Eine Solarzelle kann nur Strahlung umwandeln, deren Energie grösser ist als die Bandlücke des verwendeten Halbleitermaterials. Ist die Strahlung schwächer, entsteht kein Strom. Ist die Strahlung energiereicher, dann wird die überschüssige Strahlungsenergie in Wärme verwandelt und geht verloren. Eine zweistufige Solarzelle wie die Perowskit-CIGS-Zelle der Empa kann Substanzen mit verschiedenen Bandlücken kombinieren und so einen grösseren Anteil der eingestrahlten Sonnenenergie in Elektrizität umwandeln.

Mehr als 30 Prozent Effizienz sind möglich

Während sehr gute einstufige Solarzellen maximal 25 Prozent der Sonnenenergie in Strom umwandeln, könnten Tandem-Solarzellen auch die 30-Prozent-Marke knacken, sagt Ayodhya Tiwari, Leiter des Labors für Dünnschicht und Photovoltaik.

Doch bis dahin sei noch viel Forschungsarbeit nötig. «Was wir jetzt erreicht haben, ist erst der Anfang. Bis dieses ambitiöse Ziel erreicht ist, müssen noch etliche Hürden genommen werden. Wir brauchen dazu viel interdisziplinäre Erfahrung und eine grosse Zahl an Kombinations-Experimenten, bis eine halbtransparente Hochleistungszelle zusammen mit der passenden Basiszelle gefunden ist.»

Stephan Bücheler, der in Tiwaris Team die Laborforschung koordiniert, weist darauf hin, dass das Wettrennen um Effizienzen in der Solarzellenforschung beileibe nicht nur ein akademisches Schaulaufen ist.

«Bei der Herstellung von Solarstrom wird nur die Hälfte der Kosten durch die Solarmodule selbst verursacht. Die andere Hälfte der Kosten kommt von der Infrastruktur: Wechselrichter, Verkabelung, Tragekonstruktionen für die Zellen, Ingenieurskosten und Installation. All diese Nebenkosten sinken, wenn die Solarzellen effizienter werden und folglich kleiner gebaut werden können. Effiziente Solarzellen sind damit der Schlüssel zu preisgünstigem Ökostrom.»

Weitere Informationen:

http://www.empa.ch/plugin/template/empa/1389/162669/---/l=1 Mitteilung auf der Empa-Website.
http://www.nature.com/ncomms/2015/151118/ncomms9932/full/ncomms9932.html Publikation in Nature Communications

Rainer Klose | EMPA

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schlaflos wegen Handy? Neue Displays könnten Abhilfe schaffen
21.06.2018 | Universität Basel

nachricht Sensoren auf Gummibärchen: Team druckt Mikroelektroden-Arrays auf weiche Materialien
21.06.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics