Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


Using Computers and Sensors to Curb Electricity Use in Buildings

To reduce energy consumption in commercial buildings, computer scientists at the University of California, San Diego have come up with a way to use real-time occupancy sensors and computer algorithms to create ‘smart’ heating, ventilation and air-conditioning (HVAC) systems. Based on early test results, the software- and sensor-based solution produced electrical energy savings of between 9.54 and 15.73 percent on their test deployment on one floor of a 5-floor campus building.

“It’s clear that sensors and computing are key to reducing the demand for electricity in office buildings,” said Yuvraj Agarwal, a research scientist in UC San Diego’s Computer Science and Engineering (CSE) department. “Based on the test deployment, we estimate 40-50 percent in energy savings if we deployed our system across the entire CSE building. This is a significant real-world energy saving that comes while maintaining important quality-of-life measures related to building availability, lighting, comfort and appearance.”

Agarwal presented the project’s initial findings today in a talk on “Duty-Cycling Buildings Aggressively: The Next Frontier in HVAC Control”* at the 10th International Conference on Information Processing in Sensor Networks (IPSN) in Chicago. IPSN is one of several scientific meetings during Cyber-Physical Systems Week and is the premier conference for research in sensor systems.

Buildings account for nearly 40 percent of primary energy use in the United States, and three-quarters of that consumption is electrical—half in residential buildings, half in commercial. Building HVAC systems are therefore ripe as a source of energy efficiency and cost savings.

“Rising energy costs and damage to the environment have made scientists focus increasingly on major contributors to that consumption in the belief that even small improvements can translate into large overall savings,” said Rajesh Gupta, a co-author of the research and associate director of the UCSD division of the California Institute for Telecommunications and Information Technology (Calit2). “We focused initially on computing infrastructure, and that led us to thinking about how to use computers to improve the efficiency of existing systems that regulate when HVAC systems go on and off in buildings.”

Gupta, Agarwal and their colleagues had to look no further than the CSE building where they work, and where HVAC systems usually account for between 25 and 40 percent of total annual electricity load. Like in most commercial buildings, the campus Energy Management System sets HVAC systems on a ‘static occupancy schedule’, i.e., timed to coincide with standard working hours (for the CSE building, from 5:15 a.m. to 10 p.m. on weekdays).

This is done because there is currently no easy and cost-effective way of knowing when individual occupants arrive in or leave their offices.

“The static control algorithm is relatively primitive and it results in a lot of wasted energy during periods of low occupancy,” said Agarwal. “Our solution is a novel control architecture that uses a network of sensors to keep track in real time of which areas of the building are occupied.”

To test their system, the UCSD researchers deployed an occupancy sensor network across an entire floor of the CSE building. The sensors detected several periods of low occupancy when HVAC systems were operating at full steam – and therefore wasting energy. Working with administrators of the campus EMS, the researchers used the real-time occupancy information from each sensor node to turn the floor’s HVAC systems on or off. This so-called ‘aggressive duty-cycling’ of HVAC systems saved energy while still meeting building performance requirements. The cost of sensors and their deployment is a significant barrier that the team overcame with an in-house design that brought the cost of the sensor to below $10 – one-tenth the price of the cheapest commercial sensor. At that cost, the sensor network can make widespread monitoring and control possible inside buildings.

Instead of simply using passive-infrared (PIR) movement sensors (which are typically used to turn on lights when someone is detected entering an area), the UCSD experiment combined a PIR sensor with a magnetic reed switch. A small magnet is fitted on the door so that when the door is closed, the magnet and reed switch become adjacent, thus detecting when a door is open or closed. In testing, the combined occupancy sensor was accurate 96 percent of the time, with minimal false positives (i.e., not mistakenly detecting someone’s presence in an office when there is no one there).

More importantly, there were no false negatives during the testing phase (i.e., not detecting someone’s presence when they are actually present), which can lead to occupant discomfort if the HVAC system is turned off. The novel sensor nodes are currently designed to detect occupancy, but the same sensors could be expanded to count people or detect environmental parameters such as temperature, humidity, light levels, etc.

To be used widely in all types of new and existing buildings, “these occupancy sensors must be wireless and low power so that they are cost effective to deploy and can run on batteries for several years,” said Agarwal.

In addition to the design and implementation of a low-cost and high-accuracy wireless occupancy sensor node, the UCSD researchers designed a control architecture to actuate individual HVAC zones based on occupancy information.

The sensors are connected to a wireless module and base station, which send the information to a database and computer server that analyzes the sensor data. The team that worked on this project includes Ph.D. students Thomas Weng and Bharathan Balaji. “Working on these energy-saving technologies is extremely rewarding,” said Weng, a third-year Ph.D. student. “You can see the impact of your research immediately around you in terms of real-world savings.” Balaji, who joined the group a year ago, worked on the hardware design of the sensors were used at the core of the occupancy nodes.

Support for the research into aggressive duty-cycling came in part from the Multiscale Systems Center (MuSyC) under the Focus Center Research Program (FCRP) that is supported by DARPA/MARCO. Support also came from two NSF grants, and one from the San Diego Clean Tech Innovation and Commercialization Program, a partnership among the City of San Diego, UC San Diego’s von Liebig Center, San Diego State University, Clean Tech San Diego, and UCSD’s Sustainability Solutions Institute.

Cyber-Physical Systems

The HVAC paper is one of several delivered during Cyber-Physical Systems Week by researchers affiliated with the National Science Foundation-funded Variability Expedition. Yuvraj Agarwal is the executive director of the $10 million project, on which his co-author Rajesh Gupta is the principal investigator. Yuvraj Agarwal, Thomas Weng, Bharathan Balaji and Rajesh Gupta are all part of the Systems, Networking and Energy Efficiency (SYNERGY) Lab at UCSD founded in 2009 by Agarwal.

Gupta also co-authored a paper delivered today during the ACM/IEEE Second International Conference on Cyber-Physical Systems. The topic: “Programming Support for Distributed Optimization and Control in Cyber-Physical Systems.” His co-authors included UCSD graduate student Kaisen Lin, and a team from UCLA led by electrical engineering professor Mani Srivastava (deputy director on the Variability Expedition).

Another Variability Expedition co-PI, Steve Swanson, and fellow UCSD computer science professor Michael Taylor, co-authored “Conservation Cores: Energy-Saving Coprocessors for Nasty Real-World Code.” In an invited talk, Taylor presented the research as part of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, Tools and Theory for Embedded Systems (LCTES), one of the co-located conferences during Cyber-Physical Systems Week.

Doug Ramsey | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht Magnetization reversal achieved at room temperature using only an electric field
22.02.2019 | Tokyo Institute of Technology

nachricht The holy grail of nanowire production
20.02.2019 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst

Ein internationales Forscherteam unter Beteiligung von Astronomen des Bonner Max-Planck-Instituts für Radioastronomie hat Radioteleskope auf fünf Kontinenten miteinander verknüpft, um das Vorhandensein eines stark gebündelten Materiestrahls, eines sogenannten Jets zu beweisen, der vom Überrest des bisher einzigen bekannten Gravitationswellenereignisses ausgeht, bei dem zwei Neutronensterne miteinander verschmolzen. Bei den Beobachtungen im weltweiten Netzwerk spielte das 100-m-Radioteleskop in Effelsberg eine wichtige Rolle.

Im August 2017 wurde zum ersten Mal die Verschmelzung zweier sehr kompakter Sternüberreste, sogenannter Neutronensterne, beobachtet, deren vorhergehende...

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Materialdesign in 3D: vom Molekül bis zur Makrostruktur

Mit additiven Verfahren wie dem 3D-Druck lässt sich nahezu jede beliebige Struktur umsetzen – sogar im Nanobereich. Diese können, je nach verwendeter „Tinte“, die unterschiedlichsten Funktionen erfüllen: von hybriden optischen Chips bis zu Biogerüsten für Zellgewebe. Im gemeinsamen Exzellenzcluster „3D Matter Made to Order” wollen Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und der Universität Heidelberg die dreidimensionale additive Fertigung auf die nächste Stufe heben: Ziel ist die Entwicklung neuer Technologien, die einen flexiblen, digitalen Druck ermöglichen, der mit Tischgeräten Strukturen von der molekularen bis zur makroskopischen Ebene umsetzen kann.

„Der 3D-Druck bietet gerade im Mikro- und Nanobereich enorme Möglichkeiten. Die Herausforderungen, um diese zu erschließen, sind jedoch ebenso gewaltig“, sagt...

Im Focus: Diamanten, die besten Freunde der Quantenwissenschaft - Quantenzustand in Diamanten gemessen

Mithilfe von Kunstdiamanten gelang einem internationalen Forscherteam ein weiterer wichtiger Schritt in Richtung Hightech-Anwendung von Quantentechnologie: Erstmals konnten die Wissenschaftler und Wissenschaftlerinnen den Quantenzustand eines einzelnen Qubits in Diamanten elektrisch zu messen. Ein Qubit gilt als die Grundeinheit der Quanteninformation. Die Ergebnisse der Studie, die von der Universität Ulm koordiniert wurde, erschienen jüngst in der renommierten Fachzeitschrift Science.

Die Quantentechnologie gilt als die Technologie der Zukunft. Die wesentlichen Bausteine für Quantengeräte sind Qubits, die viel mehr Informationen verarbeiten...

Im Focus: Wasser ist homogener als gedacht

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1% Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich...

Alle Focus-News des Innovations-reports >>>



Industrie & Wirtschaft

Mobile World Congress: Bundesamt für Strahlenschutz rät zu Handys mit geringem SAR-Wert

22.02.2019 | Veranstaltungen

Unendliche Weiten: Geophysiker nehmen den Weltraum ins Visier

21.02.2019 | Veranstaltungen

Tagung rund um zuverlässige Verbindungen

20.02.2019 | Veranstaltungen

Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
Aktuelle Beiträge

Der Zeit atomarer Vorgänge auf der Spur

22.02.2019 | Physik Astronomie

Wie Korallenlarven sesshaft werden

22.02.2019 | Biowissenschaften Chemie

Ökologische Holz-Hybridbauweisen für den Geschossbau

22.02.2019 | Architektur Bauwesen

Weitere B2B-VideoLinks
im innovations-report
in Kooperation mit academics