Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„BioFlexRobot“: Weiche Gelenke machen Roboter sicherer

29.05.2017

Großer Erfolg für die transferorientierte Forschung der TH Nürnberg auf der Hannover Messe: Neuer bionischer Gelenkroboter auf dem BMBF-Stand

Das Forscherteam um Prof. Dr.-Ing. Rüdiger Hornfeck entwickelt an der TH Nürnberg einen flexiblen Gelenkroboter. Die Wissenschaftlerinnen und Wissenschaftler zielen darauf ab, die Sicherheit in der Interaktion zwischen Mensch und Roboter noch weiter zu optimieren.


BioFlexRobot

Foto Landkammer, Schneider

Ein großer Erfolg für die transferorientierte Forschung der TH Nürnberg: Die Präsentation des Prototyps „BioFlexRobot“ auf der Hannover Messe 2017 am Stand des Bundesministeriums für Bildung und Forschung (BMBF). Der bionische Roboterarm ist eine Ergänzung zum erfolgreichen OHM-Krabbler und wird durch das BMBF gefördert.
 
Die Interaktion zwischen Mensch und Maschine wird immer wichtiger: An der TH Nürnberg arbeiten Forscherinnen und Forscher an innovativen Sicherheitstechniken im Bereich der bionischen Robotik. Nach dem erfolgreichen OHM-Krabbler stellte das Wissenschaftsteam um Prof. Dr.-Ing. Rüdiger Hornfeck von der Fakultät Maschinenbau und Versorgungstechnik mit dem bionischen Gelenkroboter „BioFlexRobot“ ein neues Projekt des Forschungstransfers bei der Hannover Messe vor. Forschungsministerin Dr. Johanna Wanka besuchte den flexiblen Roboterarm am Stand des Bundesministeriums für Bildung und Forschung (BMBF).

Prof. Dr.-Ing. Rüdiger Hornfeck erklärt die Vorteile des bionischen Gelenkantriebs: „Ein Roboter, der aus nachgiebigen Gelenken besteht, macht die direkte Zusammenarbeit zwischen Mensch und Roboter sicherer. Durch die natürliche Nachgiebigkeit des Gelenks wird bei einem Zusammenstoß die Verletzungsgefahr auf ein Minimum reduziert.“

Das Wissenschaftsteam der TH Nürnberg hat das bionische Funktionsprinzip der Spinnenbeingelenke nach dem „Biology-Push“ Prinzip in die Technik des Roboterarms übertragen. Die TH Nürnberg kooperiert in diesem Forschungsprojekt mit Industriepartnern wie Festo, Bosch, Battenberg und Haas. Für eine praktische Ausführung des Gelenkprinzips wurde ein europäisches Patent mit dem Aktenzeichen EP2902642B1 erteilt.

Den Roboter „BioFlexRobot“ auf der Hannover Messe auszustellen, ermöglicht der TH Nürnberg innovative Impulse über die Grenzen der Metropolregion Nürnberg hinaus zu setzten. Mit rund 6500 Aussteller und 225.000 Besuchern erreichte die Messe 2017 eine hohe Resonanz.

Das Bundesministerium für Bildung und Forschung (BMBF) unterstützt das Forschungsprojekt mit der Förderlinie "FHproUnt" im Programms "Forschung an Fachhochschulen" mit rund 550.000 Euro.

Informationen zum bionischen Prinzip, das auch im Vorgänger-Modell ‚OHM-Krabbler‘ eingesetzt wurde:
Die Wissenschaftlerinnen und Wissenschaftler orientierten sich an der Anatomie des Spinnenbeins. Die Tiere verfügen zwar über einen Beugemuskel, nicht aber über einen Streckmuskel. Um ihre Gliedmaßen zu strecken, pumpen sie bei der Fortbewegung eine Körperflüssigkeit in die Beine. Diese sorgt dafür, dass die Beine äußert nachgiebig und flexibel auf kleine Berührungen reagieren.

Hinweis für Redaktionen:
Kontakt: Hochschulkommunikation der TH Nürnberg, Tel. 0911/5880-4101, E-Mail: presse@th-nuernberg.de

Astrid Gerner | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.th-nuernberg.de

Weitere Berichte zu: BMBF Bildung und Forschung BioFlexRobot Gelenke Roboter innovative Impulse

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schlaflos wegen Handy? Neue Displays könnten Abhilfe schaffen
21.06.2018 | Universität Basel

nachricht Sensoren auf Gummibärchen: Team druckt Mikroelektroden-Arrays auf weiche Materialien
21.06.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics