Bezahlbare Hochwirkungsgrad-Solarzellen mit hochqualitativem n-Typ-Blocksilizium

Dr. Christian Reimann vom Fraunhofer IISB an der FuE-Bricon-G1-Kristallisationsanlage in Erlangen. Reimann erforscht im Projekt HENSi die kostengünstigere Herstellung von defektarmem und widerstandshomogenem n-Typ-Silizium für preiswerte Hochwirkungsgrad-Solarzellen durch gerichtete Erstarrung. Fraunhofer IISB<br>

Photovoltaik ist ein wichtiger Baustein für eine regenerative Energieversorgung. Die wirtschaftliche Erzeugung von Solarstrom erfordert aber Solarzellen mit maximalen Wirkungsgraden bei möglichst niedrigen Herstellungskosten. Geht es um technologische Konzepte für derartige Hocheffizienz-Solarzellen, wird oft Phosphor-dotiertes n-Typ-Silizium als Grundmaterial favorisiert.

Gegenwärtig ist der Marktanteil von n-Typ-Solarzellen relativ gering, es dominieren Solarzellen aus Bor-dotiertem p-Typ-Material. Eine Ursache liegt darin begründet, dass die Herstellung der benötigten n-Typ-Siliziumkristalle vergleichsweise teuer ist bzw. mit weniger aufwändigen Herstellungsverfahren bislang nicht die erforderliche Materialqualität erreicht werden kann. Kristallzüchtungsexperten vom Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB in Erlangen wollen das im vom Bundesumweltministerium geförderten Verbundprojekt „HENSi – Hocheffizienz-Solarzellen auf defektreduziertem n-Typ mc Silizium“ ändern.

Gemeinsam mit Partnern aus der Industrie und Forschung entwickeln die Fraunhofer-Forscher die wissenschaftlich-technischen Grundlagen für die kostengünstigere Herstellung von n-Typ-Siliziumkristallen mit reduzierter Defektdichte und homogener Widerstandsverteilung.

n-Typ-Solarzellen basieren heute fast ausschließlich auf qualitativ hochwertigen monokristallinen Siliziumkristallen. Diese Siliziumkristalle werden im sogenannten Czochralski-Verfahren aus einer 1400 °C heißen Siliziumschmelze gezogen. Um im resultierenden Kristall gezielt den elektrischen Widerstand einzustellen, wird der Schmelze Phosphor als Dotierstoff zugegeben. Physikalisch bedingt steigt mit zunehmender Prozesszeit die Phosphorkonzentration sowohl in der Schmelze als auch im Kristall an. In der Folge variiert der elektrische Widerstand des Kristallmaterials zwischen Kristallanfang und Kristallende relativ stark. Für die Solarzellenfertigung werden die Einkristalle in Scheiben – so genannte Wafer – geschnitten, die entsprechend unterschiedliche Widerstandswerte aufweisen.
Die Herstellung von n-Typ-Solarzellen erfordert Wafer, deren elektrischer Widerstand möglichst einheitlich ist. Durch die Veränderung des elektrischen Widerstands im Kristallmaterial ist daher bei Phosphor-Dotierung im Normalfall die Ausbeute an Wafern, die pro Kristall innerhalb der geforderten elektrischen Spezifikation liegen, geringer als bei der standardmäßig für p-Typ-Material eingesetzten Bor-Dotierung. Daraus resultieren höhere Waferkosten, welche die Markterschließung für n-Typ-Solarzellen erschweren.

Im Projekt HENSi werden die n-Typ-Siliziumkristalle nicht mit dem Czochralski-Verfahren, sondern mit dem kostengünstigeren Verfahren der gerichteten Erstarrung hergestellt. Bei der gerichteten Erstarrung wird das Ausgangsmaterial in einem Tiegel aufgeschmolzen und anschließend durch kontrollierte Wärmeabfuhr kristallin erstarrt. Die so hergestellten Silizium-kristalle sind verfahrensbedingt multikristallin und enthalten Kristallfehler, die bislang verhindern, dass aus diesem Material n-Typ-Solarzellen mit höchsten Wirkungsgraden gefertigt werden können. Zum anderen variiert auch bei der gerichteten Erstarrung von Phosphor-dotiertem Silizium der elektrische Widerstand im Kristallmaterial.

Im Rahmen von HENSi sollen diese materialbedingten Probleme bei der gerichteten Erstarrung überwunden werden. Dazu wurde am Fraunhofer IISB in Erlangen eine spezielle FuE-Kristallisationsanlage installiert. Die für Temperaturen von bis zu 1800 °C ausgelegte Anlage wurde nach eigenen Vorgaben entwickelt. Der Kristallzüchtungsofen kann flexibel für unter-schiedliche FuE-Aufgaben im Rahmen der Materialoptimierung und Kostenreduktion in den Bereichen Energieerzeugung, Umwandlung und Speicherung eingesetzt werden. In der Anlage lassen sich im Technikums-Maßstab bis zu 30 kg schwere Kristalle im sogenannten G1-Format züchten. Durch eine entsprechende Aktuatorik und Sensorik werden die Kristallisati-onsvorgänge gezielt beeinflusst und optimiert, z.B. hinsichtlich Gefügestruktur und Fremdphasenbildung. Aus den G1-Kristallen können Wafer in der Industriedimension von 156 mm x 156 mm geschnitten werden. Speziell im Projekt HENSi werden diese Wafer von den Projektpartnern eingesetzt, um die Herstellungsprozesse für Hocheffizienzsolarzellen auf n-Typ-Material weiter zu entwickeln. Gelingt es den Forschern, die Defektdichte des gerichtet erstarrten n-Typ-Siliziummaterials deutlich zu senken und gleichzeitig den elektrischen Widerstand homogen einzustellen, sind wichtige Voraussetzungen geschaffen, um in Zukunft kostengünstige Hochleistungssolarzellen herzustellen.

Dr. Jochen Friedrich, Leiter der Abteilung Kristallzüchtung am Fraunhofer IISB in Erlangen, fasst zusammen: „Aufgrund der materialspezifischen Vorteile bilden n-Typ-Solarzellen die Grundlage für die meisten der zur Zeit weltweit in Entwicklung befindlichen Konzepte für High-end-Solarzellen. Der Marktanteil der n-Typ-Solarzellen ist heute noch sehr gering, soll aber gemäß diverser Roadmaps schon in den nächsten Jahren stark ansteigen. Vor diesem Hintergrund gewinnt die kostengünstigere Herstellung von n-Typ-Material höchster Qualität auch eine strategische Bedeutung.“

Das Verbundvorhaben „HENSi“ (Förderkennzeichen 0325449B) wird gefördert vom Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit aufgrund eines Beschlusses des Deutschen Bundestages.

Ansprechpartner:
Dr. Christian Reimann
Fraunhofer IISB
Schottkystraße 10, 91058 Erlangen, Germany
Tel. +49-9131-761-272
Fax +49-9131-761-280
christian.reimann@iisb.fraunhofer.de

Fraunhofer IISB:
Das 1985 gegründete Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB betreibt angewandte Forschung und Entwicklung auf den Gebieten Leistungselektronik, Mechatronik, Mikro- und Nanoelektronik. Mit seinen Arbeiten zu leistungselektronischen Systemen für Energieeffizienz, Hybrid- und Elektrofahrzeuge sowie zur Technologie-, Geräte- und Materialentwicklung für die Nanoelektronik genießt das Institut internationale Aufmerksamkeit und Anerkennung. Rund 180 Mitarbeiterinnen und Mitarbeiter arbeiten in der Vertragsforschung für die Industrie und öffentliche Einrichtungen. Neben seinem Hauptsitz in Erlangen betreibt das IISB weitere Standorte in Nürnberg und Freiberg. Das IISB kooperiert eng mit dem Lehrstuhl für Elektronische Bauelemente der Friedrich-Alexander-Universität Erlangen-Nürnberg.

Media Contact

Dr. Christian Reimann Fraunhofer-Institut

Weitere Informationen:

http://www.iisb.fraunhofer.de/presse

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer