Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Silizium-Dünnschichtsolarzellen auf dem Vormarsch

05.04.2002


11,2 Prozent lautet die neueste Zahl aus den Labors des Instituts für Photovoltaik (IPV) des Forschungszentrums Jülich. Diesen stabilen Wirkungsgrad haben die Wissenschaftler bei einer ein Quadratzentimeter großen Silizium-Dünnschichtsolarzelle erzielt. Im nächsten Schritt gilt es, das erfreuliche Ergebnis auf größere Solarmodule zu übertragen. Auch hier haben die Jülicher bereits erste Erfolge vorzuweisen und die Forschungen laufen weiterhin auf Hochtouren.

Sonnenlicht preiswert direkt in Strom zu wandeln ist ein wichtiges Ziel moderner Energieforschung. Silizium-Dünnschichtsolarzellen versprechen vergleichsweise geringere Kosten als herkömmliche Solarzellen. Doch um ein Massenprodukt der Zukunft zu werden, müssen die Wirkungsgrade großflächiger Module im Langzeitbetrieb von zurzeit etwa 6 bis 7 Prozent erst auf 10 Prozent klettern. Im Labormaßstab haben Jülicher Wissenschaftler nun eine Silizium-Dünnschichtsolarzelle hergestellt, deren Wirkungsgrad auch nach über 1000 Stunden Sonneneinstrahlung bei stabilen 11,2 Prozent lag. Damit haben sie eine erste Hürde auf dem Weg zum marktreifen Produkt mit Erfolg genommen.

Silizium-Dünnschichtsolarzellen bestehen aus mehreren Schichten, die mithilfe verschiedener Techniken im Vakuum auf einem Glassubstrat abgeschieden werden. Durch eine erste Schicht aus transparentem und leitfähigem Metalloxid (TCO= transparent conductive oxide) fällt das Sonnenlicht auf die Silizium-Schicht: Hier wird es geschluckt und die dabei erzeugten Ladungsträger nach außen abtransportiert - fertig ist der Solarstrom.

Bewährt hat sich das Konzept der Stapelzellen mit mehreren übereinander liegenden Silizium-Schichten. Zudem steigt der Wirkungsgrad, wenn eine Schicht aus dem für Dünnschichtsolarzellen üblichen amorphen Silizium besteht und eine zweite aus einer weiteren Variante, dem mikrokristallinen Silizium. "Mit einer solchen Tandemzelle haben wir die 11,2 Prozent erzielt", freut sich Dr. Bernd Rech vom IPV, "das war sozusagen Stufe eins. Die wirklichen Vorteile der Dünnschichttechnologie zeigen sich dann in Stufe zwei, beim Übergang von einer einzelnen Zelle zum Solarmodul."

In einem Solarmodul sind viele einzelne Solarzellen in Serie geschaltet, daher addieren sich deren Spannungen. Bei herkömmlichen Modulen werden einzelne Solarzellen angefertigt und anschließend durch Kontakte miteinander verbunden. Bei der Dünnschichttechnologie dagegen ist die Verschaltung bereits in die Herstellung integriert: Ein Laser schneidet die Metalloxid- und die Silizium-Schicht jeweils gleich, nachdem sie auf einem großflächigen Glassubstrat abgeschieden wurden, in einzelne Streifen; diese Streifen sind dann elektrisch in Serie geschaltet.

Die Jülicher Wissenschaftler arbeiten daran, eine komplette Prozesstechnologie für solche großflächigen (30 x 30 Quadratzentimeter großen) Glassubstrate aufzubauen. Die Silizium-Beschichtung funktioniert bereits, Anlagen zur Metalloxid-Beschichtung sowie zum Laserschneiden sollen in der zweiten Jahreshälfte im Rahmen eines Workshops eingeweiht werden. "Wir wollen keine Rekorde in Einzeldisziplinen aufstellen, sondern Mehrkampfmeister werden und einen in dieser Form einzigartigen Komplettansatz liefern", erläutert Bernd Rech das Jülicher Konzept, "unser Ziel ist ein industrienah und kostengünstig hergestellter, technologisch ausgereifter Prototyp."

Dass sich die guten Wirkungsgrade ihrer Tandemzellen vom Labormaßstab tatsächlich auf industrielle Größen aufskalieren lassen, haben die Jülicher Wissenschaftler auch schon gezeigt: Dazu arbeiten sie mit dem Industriepartner RWE Solar GmbH, Geschäftsgebiet Phototronics, zusammen, der bereits seit vielen Jahren 0,6 Quadratmeter (6000 Quadratzentimeter) große Dünnschichtmodule auf Basis des amorphen Siliziums herstellt. Ein Modul des neuen Jülicher Aufbaus mit einer aktiven Fläche von immerhin schon 644 Quadratzentimetern zeigte einen Anfangswirkungsgrad von 10,3 Prozent. Doch der ist durchaus ausbaufähig, ist sich Bernd Rech sicher, denn das für das Testmodul benutzte Glassubstrat war bereits mit einem kommerziellen TCO vorbeschichtet. In Jülich verfolgen die Wissenschaftler aber einen neuen Ansatz: Sie verwenden Zinkoxid als TCO, das durch Sputtern auf das Glas aufgebracht wird. Sputtern ist ein gängiges Verfahren, mit dem beispielsweise in der Glasindustrie Isolierglasscheiben gefertigt werden. Aufgeraut mit Salzsäure ist Zinkoxid zudem ein exzellenter Lichtfänger. "Auch unsere 11,2 Prozent Einzel-Zelle enthielt dieses Zinkoxid. Durch die Kombination von neuen Materialien mit ausgefeilter Prozesstechnologie werden wir auch bei großflächigen Dünnschichtmodulen dem Wirkungsgrad herkömmlicher Solarmodule nahe kommen", prophezeit Bernd Rech, "und langfristig wird sich die preiswertere Dünnschichttechnologie auf dem Markt durchsetzen."

Peter Schäfer | idw
Weitere Informationen:
http://www.fz-juelich.de/oea/PM2002/2002-11-Solarzelle_ob.html

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Energiesysteme neu denken - Lastmanagement mit Blockheizkraftwerk
19.11.2019 | Fraunhofer-Gesellschaft

nachricht Klimaneutrale Energieversorgung der Zukunft
19.11.2019 | Fraunhofer-Institut für Mikrotechnik und Mikrosysteme IMM

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Im Focus: Der direkte Weg zur Phosphorverbindung: Regensburger Chemiker entwickeln Katalysemethode

Wissenschaftler finden effizientere und umweltfreundlichere Methode, um Produkte ohne Zwischenstufen aus weißem Phosphor herzustellen.

Pflanzenschutzmittel, Dünger, Extraktions- oder Schmiermittel – Phosphorverbindungen sind aus vielen Mitteln für den Alltag und die Industrie nicht...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Neu entwickeltes Glas ist biegsam

Eine internationale Forschungsgruppe mit Beteiligung der Österreichischen Akademie der Wissenschaften hat ein Glasmaterial entwickelt, das sich bei Raumtemperatur bruchfrei verformen lässt. Das berichtet das Team aktuell in "Science". Das extrem harte und zugleich leichte Material verspricht ein großes Anwendungspotential – von Smartphone-Displays bis hin zum Maschinenbau.

Gläser sind ein wesentlicher Bestandteil der modernen Welt. Dabei handelt es sich im Alltag meist um sauerstoffhaltige Gläser, wie sie etwa für Fenster und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Weg entdeckt, um Killerzellen «umzuprogrammieren»

19.11.2019 | Biowissenschaften Chemie

Supereffiziente Flügel heben ab

19.11.2019 | Materialwissenschaften

Energiesysteme neu denken - Lastmanagement mit Blockheizkraftwerk

19.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics