Revolution in der Energietechnik

Der diesjährige Wissenschaftspreis des Stifterverbandes für die Deutsche Wissenschaft in der Kategorie „Gesellschaft braucht Wissenschaft“ geht an Dr. Bernhard Holzapfel und Prof. Ludwig Schultz vom Leibniz-Institut für Festkörper- und Werkstoffforschung in Dresden. Das entschied eine hochrangig besetzte Jury unter Leitung von Prof. Dr. Treusch, Vorstandsvorsitzender des Forschungszentrums Jülich, kürzlich in Berlin. Die beiden Wissenschaftler werden für ihre grundlagen- und anwendungsbezogenen Forschungsarbeiten auf dem Gebiet der Hochtemperatur-supraleiter (HTSL) ausgezeichnet. Die Arbeiten der beiden Physiker machen zum Beispiel widerstandsfreie Stromleitungen möglich. Die Preisverleihung findet auf der Jahrestagung der Leibniz-Gemeinschaft am 23. November 2006 in Berlin statt.

Das Phänomen Supraleitung, also vollkommen verlustfreier Stromtransport, fasziniert seit der Entdeckung der ersten Supraleiter im Jahre 1911 Wissenschaftler und Laien gleichermaßen. Als vor genau 20 Jahren die Entdeckung der Hochtemperatur-supraleitung in oxidischen Keramiken durch den Deutschen Georg Bednorz und den Schweizer Alex Müller bekannt wurde, führte dies schnell zu euphorischen Anwendungsvisionen in Elektronik, Messtechnik und Energietechnik. Die damals einsetzende und intensiv öffentlich geförderte grundlagen- und anwendungs-orientierte Forschung zeigte in den folgenden Jahren aber sehr deutlich, dass ein harter Weg von der Entdeckung des Phänomens bis zum Verständnis und zur technologischen Anwendung dieser Materialklasse zu überwinden ist. Für Anwendungen in der Energietechnik werden Kilometer lange Drähte und Kabel mit hoher Stromtragfähigkeit benötigt. Das ist für die Materialklasse der Hochtemperatur-supraleiter (HTSL) eine materialwissenschaftliche Herausforderung ersten Ranges. Zum einen lassen sich die spröden Keramiken nicht – wie zum Beispiel metallisches Kupfer – durch einfache mechanische Verformung zu langen Drähten ziehen. Zum anderen zeigte sich, dass eine hohe Stromtragfähigkeit der Hochtemperatur-supraleiter nur in weitgehend einkristallinen Bereichen möglich ist.

Es mussten also völlig neuartige Technologien entwickelt werden, die die Herstellung kilometerlanger, nahezu einkristalliner Drähte erlauben. Darüber hinaus müssen derartige Herstellungstechniken kostengünstig und skalierbar sein, um den Verdrängungswettbewerb mit dem konventionellen Leitermaterial Kupfer erfolgreich bestehen zu können. „Aufgrund der von Bernhard Holzapfel und Ludwig Schultz gemeinsam durchgeführten wegbereitenden Grundlagenarbeiten für die erfolgreiche Realisierung von HTSL-Bandleitern hat die Materialforschung auf diesem Gebiet nunmehr einen Stand erreicht, der eine umfassende technologische Anwendung im Bereich der Energietechnik realisierbar erscheinen lässt“, heißt es in der Begründung der Jury. Durch ihre von Beginn an interdisziplinäre Herangehensweise konnten Dr. Bernhard Holzapfel und Prof. Ludwig Schultz entscheidende Beiträge erarbeiten, die nunmehr die Basis für die technologische Realisierung von Hochtemperatur-supraleiterkabeln bilden und aktuell von mehreren Firmen genutzt werden. Stromkabel auf HTSL-Basis, die verlustfrei Strom leiten, könnten eines Tages zur Entschärfung der sich abzeichnenden Energiekrise beitragen. Der zu erwartende praktische Nutzen der Arbeiten ist mit ein Preiskriterium.

Seit 1990 arbeiten Dr. Bernhard Holzapfel und Prof. Ludwig Schultz, erst bei der Siemens AG und dann am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, gemeinsam erfolgreich auf dem Gebiet der Hochtemperatursupraleitung. -Mit dem Wissenschaftspreis des Stifterverbandes für die Deutsche Wissenschaft in der Kategorie „Gesellschaft braucht Wissenschaft“ werden Weg weisende wissenschaftliche Arbeiten gewürdigt, die einen praktischen Nutzen in Wirtschaft, Politik, Gesellschaft oder Forschung erwarten lassen und von Wissenschaftlerinnen und Wissenschaftlern mindestens eines Leibniz-Instituts maßgeblich durchgeführt wurden. Die Jury besteht aus zehn stimmberechtigten Mitgliedern aus Wissenschaft und öffentlichem Leben.

Kontakt:

Leibniz-Gemeinschaft
Leiter Presse- und Öffentlichkeitsarbeit
Dipl.-Geol. Thomas Vogt, M.A.
Schützenstr. 6a, 10117 Berlin
Tel. 030 / 20 60 49 42, Fax 030 / 20 60 49 55
E-Mail: vogt@leibniz-gemeinschaft.de
Dr. Carola Langer
Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW)
Helmholtzstr. 20
01069 Dresden
Tel.: 0351 / 46 59 234, Fax 0351 / 4659500
E-Mail: c.langer@ifw-dresden.de
Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Sie pflegen intensive Kooperationen mit Hochschulen, Industrie und anderen Partnern im In- und Ausland. Das externe Begutachtungsverfahren der Leibniz-Gemeinschaft setzt Maßstäbe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung. Bund und Länder fördern die Institute der Leibniz-Gemeinschaft daher gemeinsam. Die Leibniz-Institute beschäftigen rund 13.500 Mitarbeiterinnen und Mitarbeiter und haben einen Gesamtetat von 1,1 Milliarden €.

Media Contact

Thomas Vogt, M.A. idw

Weitere Informationen:

http://www.leibniz-gemeinschaft.de

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer