Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige piezoelektrische Strukturen für eine fortschrittliche Elektronik

27.03.2006


Im Rahmen des PIRAMID-Projekts wurden neue piezolelektrische (PZT) Strukturen mit außergewöhnlichen Eigenschaften entwickelt, die eine neue Gerätegeneration hervorbringen werden.



Konventionelle PZT-Materialien erwiesen sich als möglicherweise unzureichend in Bezug auf die Anforderungen moderner Aktorenanwendungen. Solche Geräte stellen an piezoelektrische und elektromechanische Kopplungskoeffizienten sowie an die dielektrische Permittivität hohe Anforderungen.



Um diesen Bedarf zu decken, wurde im Rahmen des PIRAMID-Projekts eine Vielzahl fester relaxor-ferroelektrischer Lösungen ausgiebig untersucht. Dabei konzentrierte man sich auf die Verbesserung ihrer Eigenschaften. Durch die Übernahme der neuartigen Pulververarbeitungsverfahren nutzen die Forscher neue Vorbereitungsmethoden für strukturierte Keramikmaterialien.

Zu einem der wichtigsten Projektergebnisse zählen innovative piezoelektrische Strukturen, d.h. das relaxor-basierte System Pb[(Ni_1/3 Nb_2/3)_x Zr_y Ti_1-x-y ]O_3, im Allgemeinen PNNZT genannt. Diese Neuheit zeichnet sich durch eine äußerst hohe Permittivität und Kopplung aus, wobei mittels Dotierung dielektrische und mechanische Verluste vermindert wurden.

Das PNNZT ist für Anwendungen ideal, die eine einzigartige Kombination der herkömmlichen weichen und harten PZT-Eigenschaften erfordern. Dabei eignet sich seine hohe Permittivität zur elektrischen Impedanzanpassung und seine hohe Empfindlichkeit für eine gute Effizienz bzw. ein gutes Signal-Rausch-Verhältnis.

Außerdem machen die gezeigten geringen dielektrischen und mechanischen Verluste dieses Material eventuell zu einem perfekten Kandidaten für hochleistungsfähige Betriebsanwendungen. Zu den Hauptanwendungsbereichen der PNNZT-Materialien gehören auf Hochintensität gerichteter Ultraschall, Unterwasserakustik und medizinische Diagnostik. Das neue Material wird bereits unter der Artikelnummer Pz54 vermarktet.

Im Rahmen des PIRAMID-Projekts wurden auch die Möglichkeiten für die Entwicklung von Materialien mit geringem Bleigehalt bzw. bleifreien Materialien geprüft. Erreicht wird dies, indem Blei durch das weniger giftige Bismut ersetzt wird. So können umweltfreundlichere Strukturen als die konventionellen PZTs erzeugt werden. Somit ist das neue System der allgemeinen Form von BiMe-PT eine feste Lösung aus BiMeO3 und PbTiO3.

Die BiMe-PT-Strukturen wurden so entwickelt, dass die Grundstoffkosten minimal gehalten werden können, um kostengünstige Strukturen zu erzeugen. Diese weisen äußerst interessante Eigenschaften auf wie hohe piezoelektrische Koeffizienten, freie relative Permittivität und Dicke-Kopplungsfaktor.

Eine der BiMe-PT-Strukturen ist durch einen sehr hohen Curie-Punkt gekennzeichnet, der durch die Betriebstemperatur begrenzt wird, die einen einschränkenden Faktor für weitere Untersuchungen darstellt. Es wird jedoch erwartet, dass die zukünftige Arbeit mit Dotiermitteln dieses Hindernis aus dem Weg räumt und so ein neues Material hervorbringt, das die Lücke zwischen PZT und den Aurivillius-Verbindung (zweischichtige Oxide) schließt.

Dr. Erling Ringgaard | ctm
Weitere Informationen:
http://www.ferroperm-piezo.com

Weitere Berichte zu: BiMe-PT-Struktur PIRAMID-Projekt PZT Permittivität

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?
10.07.2020 | Technische Universität Ilmenau

nachricht KIT forscht in vier neuen Batterie-Kompetenzclustern
09.07.2020 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics