Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MIT makes move toward vehicles that morph

23.03.2006


Picture a bird, effortlessly adjusting its wings to catch every current of air. Airplanes that could do the same would have many advantages over today’s flying machines, including increased fuel efficiency.

Now MIT engineers report they may have found a way for structures -- and materials -- to move in this way, essentially morphing from one shape into another.

The discovery could lead to an airplane that morphs on demand from the shape that is most energy efficient to another better suited to agility, or to a boat whose hull changes shape to allow more efficient movement in choppy, calm or shallow waters.

This science-fiction outcome, in the works for 20 years, has been unobtainable with such conventional devices as hydraulics, which aren’t practical for a variety of reasons -- from cost to weight to ease of movement.

MIT’s work involves a new application of a familiar device: the rechargeable battery. Papers describing the team’s progress appeared earlier this year in Advanced Functional Materials and Electrochemical and Solid-State Letters.

Batteries expand and contract as they are charged and recharged. "This has generally been thought to be something detrimental to batteries. But I thought we could use this behavior to another end: the actuation, or movement, of large-scale structures," said Yet-Ming Chiang, the Kyocera Professor in the Department of Materials Science and Engineering (MSE).

Chiang and Professor Steven R. Hall of the Department of Aeronautics and Astronautics led a team that also includes MSE graduate student Timothy E. Chin and postdoctoral associate Yukinori Koyama, aero-astro graduate student Fernando Tubilla and postdoctoral associate Kyung Yeol Song, and three visiting students, Urs Rhyner (from the Swiss Federal Institute of Technology, ETH-Zurich) and Dimitrios Sapnaras and Georg Baetz (University of Karlsruhe, Germany).

Several types of "active" materials are already used to move devices ranging from miniature motors to micropositioners. None, however, "can enable the large-scale structural morphing we’ve been working toward," Hall said.

For example, some "smart materials" called piezoelectrics can change shape in less than the blink of an eye, but they do so on almost a microscopic level. They wouldn’t be capable of moving a wing the distance necessary to affect flight.

Similarly, shape-memory alloys have characteristics useful to large-scale actuation, but they require temperature control to work. "So to make them work you’ve got to keep them warm and insulate them. And if you insulate them, it takes a long time to cool them down if you want them to return to their original shape," Hall said. Those are not exactly optimum conditions for seamless morphing.

In the quest for materials that would allow such morphing, engineers have recently focused on nature’s approach to the problem. A plant that bends toward the light, quickly furls its leaves when touched, or pushes a concrete sidewalk aloft with its roots is essentially moving fluids between cells.

Chiang realized that the solid compounds used to store electrical energy in lithium rechargeable batteries could be made to work in a similar way. The movement of ions to and from these materials during charging and recharging, he thought, was analogous to the moving fluids in plants. Could this be a synthetic counterpart to nature’s solution?

To find out, Chiang and Hall began testing commercially available rechargeable batteries of a prismatic form, then designed their own devices composed of graphite posts surrounded by a lithium source. The results were promising.

Among other things, they found that the batteries continued to expand and contract under tremendous stresses, a must for devices that will be changing the shape of, say, a stiff helicopter rotor that’s also exposed to aerodynamic forces.

Other key advantages of the approach: The electrically activated batteries can operate at low voltages (less than five volts) as compared to the hundreds of volts required by piezoelectrics. The materials that make up the batteries are also inherently light. "For things that fly, weight is important," Hall said.

The researchers have already demonstrated basic battery-based actuators that can pull and push with large force. Later this year, they hope to demonstrate the shape-morphing of a helicopter rotor blade. The morphing capability should allow for a more efficient design, ultimately making it possible for a vehicle to carry heavier loads. Team members say that other applications, including miniaturized devices for Micro-Electrical-Mechanical Systems (MEMS), may flow from these initial demonstrations.

The researchers emphasize that much work remains to be done, such as refining the design of the battery for optimal operation in a morphing vehicle. Chiang notes, however, that "we’ve been able to demonstrate the potential of this approach even using these very unoptimized off-the-shelf batteries."

This work was funded by the Defense Advanced Research Projects Agency (DARPA).

Elizabeth A. Thomson | MIT News Office
Weitere Informationen:
http://www.mit.edu

Weitere Berichte zu: Chiang MSE

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Digitalisierung soll Anlagenmanagement der Energieversorgungsnetze verbessern
21.03.2019 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Ultrasparsame LED-Straßenleuchten im Praxistest
21.03.2019 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zähmung der Lichtschraube

22.03.2019 | Physik Astronomie

Saarbrücker Forscher erleichtern durch Open Source-Software den Durchblick bei Massen-Sensordaten

22.03.2019 | HANNOVER MESSE

Ketten aus Stickstoff direkt erzeugt

22.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics