Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasser desinfizieren mit Licht

20.03.2006


Halbleiterdioden aus dem Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH) in Berlin könnten Quecksilberdampflampen ersetzen. Die Doden sind robuster, weitaus langlebiger und vom Material her unschädlich - anders als die giftigen Quecksilberdampflampen. Ein Einsatzgebiet ist beispielsweise die Wasserdesinfektion per UV-Licht.

Ultraviolettes Licht kann tödlich sein. Das Bombardement der kurzwelligen und energiereichen Strahlung ruft nicht nur gefährlichen Sonnenbrand hervor und lässt Hautzellen zu Tumoren entarten, sondern es tötet auch unerwünschte Krankheitserreger ab. Daher nutzen Mediziner und Wissenschaftler seit langem Quecksilberdampflampen, die UV-Licht abstrahlen, um Geräte und Wasser keimfrei zu machen. Nur: Quecksilber ist hochgiftig, und solche Lampen haben eine Lebensdauer, die in etwa der einer herkömmlichen Glühbirne entspricht: einige Tausend Stunden. Leuchtdioden dagegen sind vom Material her unschädlich und halten zehn- bis hunderttausend Stunden durch. Außerdem sind sie viel kompakter als die Quecksilberdampflampen. Michael Kneissl, seit wenigen Monaten am Ferdinand-Braun-Institut für Höchstfrequenztechnik, arbeitet an solchen Dioden aus Halbleiterkristallen. Zugleich erforscht er als Professor an der Technischen Universität Berlin die Grundlagen dieser Lichtquellen.


Blaue Leuchtdioden galten bis vor rund zehn Jahren als Ding der Unmöglichkeit. Es gelang den Forschern und Ingenieuren einfach nicht, entsprechende Halbleiterkristalle herzustellen. Die Forschung daran wurde mit Hochdruck betrieben, denn wer blaues Licht aus Dioden erzeugen konnte, der hatte den Schlüssel zum blauen Laser und zu weißem Licht aus Dioden. Beides ist enorm gewinnträchtig. Diodenlampen (Stichwort: "solid-state lighting") werden auf lange Sicht wohl die herkömmlichen Glasbirnen mit den Wolframdrähten ersetzen, denn die Glühlampen verwandeln nur einen Bruchteil der Energie in Licht, der Rest geht als Hitze verloren.

Der Weltmarkt für Leuchtdioden insgesamt wird für Ende 2007 auf acht Milliarden USDollar geschätzt, das wirtschaftliche Potenzial der blauen Laser auf 1,4 Milliarden. Die Laser beruhen auf dem selben Prinzip wie Leuchtdioden, nur dass die Lichtstrahlen beim Laser alle in eine Richtung gehen. Mit blauem Laserlicht lassen sich weitaus kleinere Strukturen auf lichtempfindlichem Material schreiben als mit dem langwelligeren roten oder infraroten Licht - DVDs und weitere Datenträger können viel dichter als bisher beschrieben werden.


Und dann gibt es das "noch blauere" Licht: die UV-Strahlen, die Wasser desinfizieren. "Schon jetzt sind kompakte und robuste Reinigungsgeräte realisierbar, die bei einer Leistungsaufnahme von 10 Watt drei bis vier Liter Wasser pro Sekunde desinfizieren", sagt Kneissl. Er beschreibt eine mögliche Anordnung: Hundert Leuchtdioden, die jeweils mit 0,1 Watt strahlen, könnten ringförmig um ein durchsichtiges Stück Wasserleitung angeordnet werden. Öffnet nun jemand den Hahn, so schalten sich automatisch die Dioden an und bestrahlen mit ihrem UV-Licht das durchströmende Wasser. Es kommt keimfrei aus der Leitung. "Denken Sie an Züge oder Flugzeuge", sagt Kneissl. "Oder an Länder in heißen Regionen mit schlechter Wasseraufbereitung. Oder an wissenschaftliche Labore und Krankenhäuser, die Reinstwasser brauchen. Ein enormes Marktpotenzial!"

Ermöglicht hat all das der Durchbruch von japanischen Wissenschaftlern. Ihnen war es gelungen, Galliumnitrid (GaN) so abzuscheiden und gezielt zu "verunreinigen" (dotieren), dass es blaues Licht aussendet. GaN zählt heute, neben dem allgegenwärtigen Silizium, zu einem der wichtigsten Halbleitermaterialien in der Elektronikindustrie.

Bis es soweit war, mussten erst geeignete Substrate und Verarbeitungsmöglichkeiten für GaN gefunden werden. All das ist kein Problem mehr: "Sie können heute schon weiße und blaue Leuchtdioden kaufen", sagt Kneissl. Jetzt geht es darum, die Grenzen weiter zu verschieben in Richtung noch kurzwelligerer Strahlung. Von Blau zu Ultraviolett eben.

Wo liegen die Schwierigkeiten? "Zum einen in der richtigen Dotierung der Halbleiter, zum anderen im Wachstum", sagt Kneissl. Die Kristalle für Laser und Dioden entstehen in einem Verfahren, das Experten als "Metallorganische Gasphasenepitaxie" bezeichnen, kurz MOVPE (Metalorganic Vapor Phase Epitaxy). Ausgangsstoffe sind beispielsweise metallorganische Verbindungen wie Trimethylgallium und Ammoniak (als Stickstoffquelle). Diese Gase werden über das heiße Substrat (etwa Saphir) geleitet, wo sie sich dann thermisch zersetzen und als GaN abscheiden. So wachsen hauchdünne Schichten, nur wenige Atom lagen übereinander. Galliumnitrid ist tückisch: Es wächst sozusagen nur ungern gleichmäßig und bildet schnell Defekte; Störungen im Kristallgitter, die zu einer drastischen Reduzierung der Lichtemission und Effizienz führen. Kneissl: "Der Trick ist es nun, Epitaxieverfahren zu entwickeln, die es gestatten hochqualitative kristalline Schichten abzuscheiden."

Es reicht jedoch nicht, richtig dotierte GaN-Schichten wachsen zu lassen. "Wir machen uns zuvor schon Gedanken um das Design der Bauelemente", erläutert Michael Kneissl. "Da geht es darum, winzigste Strukturen zu erzeugen, die von Barrieren und weiteren Schichten umgeben sind." Diese Strukturen heißen Quantentöpfe und sind nur drei bis vier Nanometer klein. Ein Nanometer ist ein Milliardstel Meter, ein menschliches Haar ist 50.000 Nanometer dick (0,05 Millimeter). Beim Design der Bauteile helfen Computerprogramme.

Nur: "Das Material, mit dem wir arbeiten, ist noch relativ neu, viele seiner Eigenschaften sind gar nicht oder nur ungenau bekannt", sagt Kneissl. Das hat die fatale Folge, dass die Simulationen auf dem Computer ebenfalls große Ungenauigkeiten aufweisen, denn die Programme arbeiten mit den physikalischen und chemischen Eigenschaften der Materialien. Daher ist Kneissl nicht nur an der anwendungsorientierten Forschung interessiert, sondern auch an den Grundlagen. "Mit meinen beiden Arbeitsgruppen kann ich das hervorragend verzahnen", sagt der Forscher. Eine davon forscht am FBH, die andere an der TU.

Weitere Informationen

Ferdinand-Braun-Institut für Höchstfrequenztechnik / TU Berlin
Prof. Dr. Michael Kneissl
Tel.: 030 / 3 14-2 25 63
Mail: michael.kneissl@fbh-berlin.de

Josef Zens | idw
Weitere Informationen:
http://www.fbh-berlin.de
http://www.physik.tu-berlin.de/institute/IFFP/kneissl/

Weitere Berichte zu: Diode GaN Laser Leuchtdiode Quecksilberdampflampe

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Neues Trocknungsverfahren für Batterieproduktion
21.02.2019 | Hochschule Landshut

nachricht Wie man Wärmeleitung einfriert
21.02.2019 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Materialdesign in 3D: vom Molekül bis zur Makrostruktur

Mit additiven Verfahren wie dem 3D-Druck lässt sich nahezu jede beliebige Struktur umsetzen – sogar im Nanobereich. Diese können, je nach verwendeter „Tinte“, die unterschiedlichsten Funktionen erfüllen: von hybriden optischen Chips bis zu Biogerüsten für Zellgewebe. Im gemeinsamen Exzellenzcluster „3D Matter Made to Order” wollen Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und der Universität Heidelberg die dreidimensionale additive Fertigung auf die nächste Stufe heben: Ziel ist die Entwicklung neuer Technologien, die einen flexiblen, digitalen Druck ermöglichen, der mit Tischgeräten Strukturen von der molekularen bis zur makroskopischen Ebene umsetzen kann.

„Der 3D-Druck bietet gerade im Mikro- und Nanobereich enorme Möglichkeiten. Die Herausforderungen, um diese zu erschließen, sind jedoch ebenso gewaltig“, sagt...

Im Focus: Diamanten, die besten Freunde der Quantenwissenschaft - Quantenzustand in Diamanten gemessen

Mithilfe von Kunstdiamanten gelang einem internationalen Forscherteam ein weiterer wichtiger Schritt in Richtung Hightech-Anwendung von Quantentechnologie: Erstmals konnten die Wissenschaftler und Wissenschaftlerinnen den Quantenzustand eines einzelnen Qubits in Diamanten elektrisch zu messen. Ein Qubit gilt als die Grundeinheit der Quanteninformation. Die Ergebnisse der Studie, die von der Universität Ulm koordiniert wurde, erschienen jüngst in der renommierten Fachzeitschrift Science.

Die Quantentechnologie gilt als die Technologie der Zukunft. Die wesentlichen Bausteine für Quantengeräte sind Qubits, die viel mehr Informationen verarbeiten...

Im Focus: Wasser ist homogener als gedacht

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1% Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich...

Im Focus: Licht von der Rolle – hybride OLED ermöglicht innovative funktionale Lichtoberflächen

Bislang wurden OLEDS ausschließlich als neue Beleuchtungstechnologie für den Einsatz in Leuchten und Lampen verwendet. Dabei bietet die organische Technologie viel mehr: Als Lichtoberfläche, die sich mit den unterschiedlichsten Materialien kombinieren lässt, kann sie Funktionalität und Design unzähliger Produkte verändern und revolutionieren. Beispielhaft für die vielen Anwendungsmöglichkeiten präsentiert das Fraunhofer FEP gemeinsam mit der EMDE development of light GmbH im Rahmen des EU-Projektes PI-SCALE auf der Münchner LOPEC (19. bis 21. März 2019), erstmals in Textildesign integrierte hybride OLEDs.

Als Anbieter von Forschungs- und Entwicklungsdienstleistungen auf dem Gebiet der organischen Elektronik setzt sich das Fraunhofer FEP schon lange mit der...

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Unendliche Weiten: Geophysiker nehmen den Weltraum ins Visier

21.02.2019 | Veranstaltungen

Tagung rund um zuverlässige Verbindungen

20.02.2019 | Veranstaltungen

LastMileLogistics Conference in Frankfurt befasst sich mit Lieferkonzepten für Ballungsräume

19.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Materialdesign in 3D: vom Molekül bis zur Makrostruktur

21.02.2019 | Verfahrenstechnologie

Neue Mechanismen der Regulation von Nervenstammzellen

21.02.2019 | Biowissenschaften Chemie

Fledermäusen auf der Spur: Miniatur-Sensoren entschlüsseln Mutter-Kind-Beziehung

21.02.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics