Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasser desinfizieren mit Licht

20.03.2006


Halbleiterdioden aus dem Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH) in Berlin könnten Quecksilberdampflampen ersetzen. Die Doden sind robuster, weitaus langlebiger und vom Material her unschädlich - anders als die giftigen Quecksilberdampflampen. Ein Einsatzgebiet ist beispielsweise die Wasserdesinfektion per UV-Licht.

Ultraviolettes Licht kann tödlich sein. Das Bombardement der kurzwelligen und energiereichen Strahlung ruft nicht nur gefährlichen Sonnenbrand hervor und lässt Hautzellen zu Tumoren entarten, sondern es tötet auch unerwünschte Krankheitserreger ab. Daher nutzen Mediziner und Wissenschaftler seit langem Quecksilberdampflampen, die UV-Licht abstrahlen, um Geräte und Wasser keimfrei zu machen. Nur: Quecksilber ist hochgiftig, und solche Lampen haben eine Lebensdauer, die in etwa der einer herkömmlichen Glühbirne entspricht: einige Tausend Stunden. Leuchtdioden dagegen sind vom Material her unschädlich und halten zehn- bis hunderttausend Stunden durch. Außerdem sind sie viel kompakter als die Quecksilberdampflampen. Michael Kneissl, seit wenigen Monaten am Ferdinand-Braun-Institut für Höchstfrequenztechnik, arbeitet an solchen Dioden aus Halbleiterkristallen. Zugleich erforscht er als Professor an der Technischen Universität Berlin die Grundlagen dieser Lichtquellen.


Blaue Leuchtdioden galten bis vor rund zehn Jahren als Ding der Unmöglichkeit. Es gelang den Forschern und Ingenieuren einfach nicht, entsprechende Halbleiterkristalle herzustellen. Die Forschung daran wurde mit Hochdruck betrieben, denn wer blaues Licht aus Dioden erzeugen konnte, der hatte den Schlüssel zum blauen Laser und zu weißem Licht aus Dioden. Beides ist enorm gewinnträchtig. Diodenlampen (Stichwort: "solid-state lighting") werden auf lange Sicht wohl die herkömmlichen Glasbirnen mit den Wolframdrähten ersetzen, denn die Glühlampen verwandeln nur einen Bruchteil der Energie in Licht, der Rest geht als Hitze verloren.

Der Weltmarkt für Leuchtdioden insgesamt wird für Ende 2007 auf acht Milliarden USDollar geschätzt, das wirtschaftliche Potenzial der blauen Laser auf 1,4 Milliarden. Die Laser beruhen auf dem selben Prinzip wie Leuchtdioden, nur dass die Lichtstrahlen beim Laser alle in eine Richtung gehen. Mit blauem Laserlicht lassen sich weitaus kleinere Strukturen auf lichtempfindlichem Material schreiben als mit dem langwelligeren roten oder infraroten Licht - DVDs und weitere Datenträger können viel dichter als bisher beschrieben werden.


Und dann gibt es das "noch blauere" Licht: die UV-Strahlen, die Wasser desinfizieren. "Schon jetzt sind kompakte und robuste Reinigungsgeräte realisierbar, die bei einer Leistungsaufnahme von 10 Watt drei bis vier Liter Wasser pro Sekunde desinfizieren", sagt Kneissl. Er beschreibt eine mögliche Anordnung: Hundert Leuchtdioden, die jeweils mit 0,1 Watt strahlen, könnten ringförmig um ein durchsichtiges Stück Wasserleitung angeordnet werden. Öffnet nun jemand den Hahn, so schalten sich automatisch die Dioden an und bestrahlen mit ihrem UV-Licht das durchströmende Wasser. Es kommt keimfrei aus der Leitung. "Denken Sie an Züge oder Flugzeuge", sagt Kneissl. "Oder an Länder in heißen Regionen mit schlechter Wasseraufbereitung. Oder an wissenschaftliche Labore und Krankenhäuser, die Reinstwasser brauchen. Ein enormes Marktpotenzial!"

Ermöglicht hat all das der Durchbruch von japanischen Wissenschaftlern. Ihnen war es gelungen, Galliumnitrid (GaN) so abzuscheiden und gezielt zu "verunreinigen" (dotieren), dass es blaues Licht aussendet. GaN zählt heute, neben dem allgegenwärtigen Silizium, zu einem der wichtigsten Halbleitermaterialien in der Elektronikindustrie.

Bis es soweit war, mussten erst geeignete Substrate und Verarbeitungsmöglichkeiten für GaN gefunden werden. All das ist kein Problem mehr: "Sie können heute schon weiße und blaue Leuchtdioden kaufen", sagt Kneissl. Jetzt geht es darum, die Grenzen weiter zu verschieben in Richtung noch kurzwelligerer Strahlung. Von Blau zu Ultraviolett eben.

Wo liegen die Schwierigkeiten? "Zum einen in der richtigen Dotierung der Halbleiter, zum anderen im Wachstum", sagt Kneissl. Die Kristalle für Laser und Dioden entstehen in einem Verfahren, das Experten als "Metallorganische Gasphasenepitaxie" bezeichnen, kurz MOVPE (Metalorganic Vapor Phase Epitaxy). Ausgangsstoffe sind beispielsweise metallorganische Verbindungen wie Trimethylgallium und Ammoniak (als Stickstoffquelle). Diese Gase werden über das heiße Substrat (etwa Saphir) geleitet, wo sie sich dann thermisch zersetzen und als GaN abscheiden. So wachsen hauchdünne Schichten, nur wenige Atom lagen übereinander. Galliumnitrid ist tückisch: Es wächst sozusagen nur ungern gleichmäßig und bildet schnell Defekte; Störungen im Kristallgitter, die zu einer drastischen Reduzierung der Lichtemission und Effizienz führen. Kneissl: "Der Trick ist es nun, Epitaxieverfahren zu entwickeln, die es gestatten hochqualitative kristalline Schichten abzuscheiden."

Es reicht jedoch nicht, richtig dotierte GaN-Schichten wachsen zu lassen. "Wir machen uns zuvor schon Gedanken um das Design der Bauelemente", erläutert Michael Kneissl. "Da geht es darum, winzigste Strukturen zu erzeugen, die von Barrieren und weiteren Schichten umgeben sind." Diese Strukturen heißen Quantentöpfe und sind nur drei bis vier Nanometer klein. Ein Nanometer ist ein Milliardstel Meter, ein menschliches Haar ist 50.000 Nanometer dick (0,05 Millimeter). Beim Design der Bauteile helfen Computerprogramme.

Nur: "Das Material, mit dem wir arbeiten, ist noch relativ neu, viele seiner Eigenschaften sind gar nicht oder nur ungenau bekannt", sagt Kneissl. Das hat die fatale Folge, dass die Simulationen auf dem Computer ebenfalls große Ungenauigkeiten aufweisen, denn die Programme arbeiten mit den physikalischen und chemischen Eigenschaften der Materialien. Daher ist Kneissl nicht nur an der anwendungsorientierten Forschung interessiert, sondern auch an den Grundlagen. "Mit meinen beiden Arbeitsgruppen kann ich das hervorragend verzahnen", sagt der Forscher. Eine davon forscht am FBH, die andere an der TU.

Weitere Informationen

Ferdinand-Braun-Institut für Höchstfrequenztechnik / TU Berlin
Prof. Dr. Michael Kneissl
Tel.: 030 / 3 14-2 25 63
Mail: michael.kneissl@fbh-berlin.de

Josef Zens | idw
Weitere Informationen:
http://www.fbh-berlin.de
http://www.physik.tu-berlin.de/institute/IFFP/kneissl/

Weitere Berichte zu: Diode GaN Laser Leuchtdiode Quecksilberdampflampe

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Auf dem Weg zur Prothese der Zukunft
25.09.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Elektrifizierung von Nutzfahrzeugen
25.09.2018 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kupfer-Aluminium-Superatom

Äußerlich sieht der Cluster aus 55 Kupfer- und Aluminiumatomen aus wie ein Kristall, chemisch hat er jedoch die Eigenschaften eines Atoms. Das hetero-metallische Superatom, das Chemikerinnen und Chemiker der Technischen Universität München (TUM) hergestellt haben, schafft die Voraussetzung für die Entwicklung neuer, kostengünstiger Katalysatoren.

Chemie kann teuer sein. Zum Reinigen von Abgasen beispielsweise benutzt man Platin. Das Edelmetall dient als Katalysator, der chemische Reaktionen...

Im Focus: Hygiene im Handumdrehen – mit neuem Netzwerk „CleanHand“

Das Fraunhofer FEP beschäftigt sich seit Jahrzehnten mit der Entwicklung von Prozessen und Anlagen zur Reinigung, Sterilisation und Oberflächenmodifizierung. Zur Bündelung der Kompetenzen vieler Partner wurde im Mai 2018 das Netzwerk „CleanHand“ zur Entwicklung von Systemen und Technologien für saubere Oberflächen, Materialien und Gegenstände ins Leben gerufen. Als Partner von „CleanHand“ präsentiert das Fraunhofer FEP im Rahmen der Messe parts2clean, vom 23.-25. Oktober 2018, in Stuttgart, am Stand der Fraunhofer-Allianz Reinigungstechnik (Halle 5, Stand C31), das Netzwerk sowie aktuelle Forschungsschwerpunkte des Institutes im Bereich Hygiene und Reinigung.

Besonders um die Hauptreisezeiten gehen vermehrt Testberichte und Studien über die Reinheit von europäischen Raststätten, Hotelbetten und Freibädern durch die...

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Neue Therapien bei Gefäßerkrankungen

Auf der Jahrestagung der Deutschen Gesellschaft für Angiologie (DGA) vom 12. bis 15. September in Münster stellten Gefäßspezialisten aus ganz Deutschland die neuesten Therapien bei Gefäßerkrankungen vor. Vor allem in den Bereichen periphere arterielle Verschlusskrankheit (pAVK) und venöse Verschlusskrankheiten wie die Tiefe Venenthrombose (TVT) gibt gute Neuigkeiten für die Patienten. Viele der 720 Gefäßspezialisten, die an der Jahrestagung teilnahmen, stellten neueste Studienergebnisse vor.

Millionen Menschen leiden in Deutschland unter Gefäßerkrankungen, allein rund fünf Millionen unter der „Schaufensterkrankheit“, medizinisch periphere...

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fachkonferenz "Automatisiertes und autonomes Fahren"

25.09.2018 | Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bisher unbekannter Mechanismus der Blut-Hirn-Schranke entdeckt

25.09.2018 | Biowissenschaften Chemie

Suche nach Grundwasser im Ozean - Neues deutsch-maltesisches Forschungsprojekt gestartet

25.09.2018 | Geowissenschaften

Auf dem Weg zur Prothese der Zukunft

25.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics