Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Schaerfster" 3D-Drucker Oesterreichs in Betrieb

15.11.2005


Österreichs höchstauflösender 3D-Drucker wurde von der Technischen Universität (TU) Wien und der Fachhochschule (FH) Wiener Neustadt installiert und ist seit Oktober dieses Jahres betriebsbereit.



Wien (TU) Drucker, mit denen dreidimensionale Objekte erstellt werden können, sind mittlerweile keine Seltenheit mehr. Berichtenswert erscheint jedoch die Tatsache, dass dank der Initiative von ForscherInnen der TU Wien und der FH Wiener Neustadt Österreichs "schärfster", sprich höchstauflösender 3D-Drucker betriebsbereit ist. Dieses hochpräzise System eröffnet der österreichischen Forschungslandschaft und auch der österreichischen Industrie neue Möglichkeiten zur Herstellung komplexer dreidimensionaler Miniaturbauteile wie sie in immer mehr Elektronikgeräten - z.B. Stecker und Halterungen in Mobiltelefonen - sowie in der Medizintechnik verwendet werden.



Der superpräzise 3D-Drucker existiert in dieser Form weltweit nur ein Mal. Er wurde nach den Spezifikationen der beiden Projektpartner in Deutschland gefertigt und kostete immerhin 200.000,- Euro. Das beantwort eine der Fragen nach der Kooperation zwischen der TU Wien und der FH Wiener Neustadt. Eine weitere Erklärung liegt in der Intensivierung der Forschungszusammenarbeit. Die Kooperation ist ein gutes Beispiel dafür, dass Unis und Fachhochschulen durch gemeinsame Investitionen begrenzte Forschungsmittel besser ausnützen können.

Die neue Mikro-Rapid-Prototyping-Anlage, die im Oktober dieses Jahres in den Institutslaborräumen in der Wiener Favoritenstraße in Betrieb genommen wurde, leistet viel: von der Produktion kostengünstiger Prototypen oder Kleinserien bis hin zu komplexen Bauteilen, die mit den herkömmlichen und gängigen Fertigungstechnologien nicht mehr realisierbar sind. Sie können mit einem stereolithografischen Verfahren unmittelbar aus einem 3D-CAD-Modell generieren. Ein CAD-Modell wird in Schichten zerlegt und aus diesen werden direkt die Daten zur flexiblen Prozesssteuerung ermittelt. Diese Daten steuern einen ultravioletten Laserstrahl in Bahnen über die Oberfläche eines flüssigen Polymers. Durch eine lokale Aushärtung können in einer Schicht beliebige Geometrien erzeugt werden. Durch die Vernetzung der einzelnen Schichten entsteht das Bauteil 1:1 als physisches Abbild des CAD-Modells. Beispiele: http://www.tuwien.ac.at/pr/download/download_pa_48_05.shtml

Bei einem Bauraum von 40x40x40mm kann das Gerät beliebige Geometrien mit einer Auflösung in der x-y-Ebene von bis zu 5 Mikrometer, was 5000dpi entspricht, und 10 Mikrometer in der z-Ebene strukturieren. Das Gerät ist mit diesen Spezifikationen somit das höchstauflösende Stereolithographiegerät in Österreich.

Derzeit laufen bereits drei aktuelle Projekte, die sich diese neuen Möglichkeiten zunutze machen. Während sich die FH Wiener Neustadt auf Anwendungen im Werkzeugbau und industrienahe Dienstleistungen konzentriert, nutzt die TU Wien die Anlage zur Entwicklung neuartiger Photopolymere mit gezielt einstellbaren optischen und biofunktionellen Eigenschaften. So sollen beispielsweise gezielt optische Leiterbahnen in Platinen zur Versorgung optoelektronischer Bauelemente eingeschrieben werden. Für Anwendungen in der Zellbiologie besteht die Möglichkeit der Herstellung dreidimensional strukturierter Gerüste zur Untersuchung und Kultivierung von Zellkulturen.

Die beiden Institute für Werkstoffwissenschaft und Werkstofftechnologie sowie Angewandte Synthesechemie der TU Wien haben gemeinsam mit der Fachhochschule Wiener Neustadt dieses System angeschafft. Neben Forschungsaktivitäten steht der neue 3D-Drucker österreichischen Firmen im Rahmen von Forschungskooperationen, Projekten und als Dienstleistung für die Einzelstück- bzw. Kleinserienfertigung von Mikrostrukturen zur Verfügung. Damit soll dem internationalen Trend in Richtung Rapid Prototyping Folge geleistet werden. Gleichzeitig werden neue Akzente in der österreichischen Mikrosystemtechnik-Landschaft gesetzt.

Neben Eigenmitteln der TU Wien wurden Förderungen im Rahmen des FHplus-Projektes "Einsatz von Rapid Prototyping Verfahren für den Mikroformenbau" sowie Mittel aus der österreichischen Nano-Initiative (Projekt ISOTEC) in dieses zukunftsträchtige Vorhaben investiert.

Rückfragehinweis:
Ao.Univ.Prof. Dipl.-Ing. Dr. Jürgen Stampfl
Technische Universität Wien
Institut für Werkstoffwissenschaft und Werkstofftechnologie
T: +43-1-58801-30862
Email: jstampfl@pop.tuwien.ac.at

Dipl.-Ing. (FH) Stephanie Fischer
Fachhochschule Wiener Neustadt für Wirtschaft und Technik Ges. m. b. H.
Fachbereich Mikrosystemtechnik
Email: stephanie.fischer@fhwn.ac.at

Mag. Karin Peter | idw
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Berichte zu: 3D-Drucker Prototyping Schicht Werkstoffwissenschaft

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Sicherungsklemmen bis 1000 V
27.09.2018 | PHOENIX CONTACT GmbH & Co.KG

nachricht Warnschilder für Reihenklemmen mit Push-in Anschluss
26.09.2018 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ein neues Mittel gegen Zöliakie

24.09.2018 | Biowissenschaften Chemie

Entscheidung über Attraktivität fällt in Millisekunden

24.09.2018 | Studien Analysen

Künstliche Intelligenz im Fokus – Schulungsangebot zum maschinellen Lernen für Industrie und Forschung startet

24.09.2018 | Seminare Workshops

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics