Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserstrahlumformen: Eine Sekunde Hitze auf engstem Raum

13.07.2000


Um mehr als zehntausend Grad in einer Sekunde heizen Werkstoffe sich auf und kühlen ebenso schnell wieder ab, wenn sie mit einem Laserstrahl in Form gebracht werden. Daß dabei auch die Mikrostruktur und damit die Eigenschaften des bearbeiteten Materials sich verändern, ist unvermeidlich; doch sollen die Bauteile sowohl exakt geformt sein als auch weiterhin beispielsweise bruch- und reißfest bleiben. Im Schwerpunktprogramm "Kurzzeitmetallurgie" fördert die Deutsche Forschungsgemeinschaft für weitere zwei Jahre ein Grundlagenforschungsprojekt zu dieser Problematik am Lehrstuhl für Fertigungstechnologie von Prof. Dr.-Ing. Dr. Ing. E.h. mult. Dr. h.c. Manfred Geiger an der Universität Erlangen-Nürnberg. Das Projekt, das von Dipl.-Ing. Marion Merklein bearbeitet wird, hat damit eine Gesamtlaufzeit von fünf Jahren.

Das Laserstrahlumformen ist ein flexibles Fertigungsverfahren, das seit einigen Jahren im Rapid Prototyping, der Kleinserienfertigung oder dem Richten geschweißter Komponenten angewendet wird. Für dieses sehr innovative Verfahren müssen keine aufwendigen Umformwerkzeuge bereitgestellt werden. Um das Einsatzspektrum des Laserstrahlumformens, z. B. im Automobilbau für das Richten gegossener Bauteile, erweitern zu können, ist es unabdingbar, die Auswirkungen der Laserbestrahlung und der damit verbundenen kurzzeitigen Erwärmung (Aufheiz- und Abkühlgeschwindigkeit > 104 K/s) auf die mechanischen Eigenschaften und die Mikrostruktur des Werkstoffes genau beschreiben zu können. Bei dieser Lasermaterialbearbeitung wird in einem eng begrenzten Bereich der Werkstoff aufgeheizt, jedoch an der Wärmeausdehnung gehindert und dadurch plastisch verformt; damit verändern sich an der bearbeiteten Stelle auch die Werkstoffeigenschaften. Zwei Aluminiumlegierungen, beide typische Außenhautwerkstoffe im Automobilbau, werden vorrangig untersucht. Die Werkstoffe werden auf unterschiedliche Weise mit Wärme behandelt und weisen deshalb unterschiedliche Eigenschaften auf.

In den ersten drei Projektjahren konnten die Auswirkungen des Laserstrahlumformens bei Verwendung eines Nd:YAG-Lasers für Blechwerkstoffe der Blechdicken 1 bis 3 mm untersucht und beschrieben werden. Das Gefüge wurde lichtmikroskopisch untersucht, die Mikrostruktur mit dem Elektronenmikroskop. Art und Umfang der Beeinflussung der mechanischen Eigenschaften konnten mittels Ultrakleinlasthärtemessungen und Zugversuchen nachgewiesen werden. Die beim Laserstrahlumformen auftretenden Temperaturfelder und Temperaturgradienten sowie die lokal vorherrschenden Spannungs- und Dehnungszustände wurden mittels FEM- Simulation berechnet. Eine Korrelation dieser Ergebnisse mit denen der FEM (Finite-Elemente-Methode) ermöglicht die modellartige Beschreibung der Werkstoffveränderungen für das Laserstrahlumformen bei Verwendung eines Nd:YAG-Lasers.

Im weiteren Verlauf des Projektes sollen die Untersuchungen auf das Excimer-Laserstrahlumformen ausgedehnt werden. Da die Strahlung hier sehr viel weniger tief in den Werkstoff eindringt, können deutlich dünnere Bleche in das Versuchsprogramm aufgenommen werden. Damit soll geprüft werden, ob die bisher gefundenen Zusammenhänge sowohl auf andere Lasersysteme als auch auf ein breiteres Werkstoffspektrum übertragbar sind. Temperaturmessungen an den umzuformenden Bauteilen sollen das FEM-Modell absichern und die Simulationsergebnisse verbessern. Diese Messungen gewährleisten einen Abgleich von Experiment und Simulation.

Nach Ablauf der Projektdauer von fünf Jahren wird es möglich sein, sowohl die Grenzen des Laserstrahlumformens aus werkstoffkundlicher Sicht aufzuzeigen als auch sinnvolle Prozeßketten vorzugeben, die notwendige Anforderungen an Werkstoffe beim Laserstrahlumformen sichern.

Kontakt:
Prof. Dr.-Ing. Dr.-Ing. E.h. mult. Dr. h.c. Manfred Geiger, Dipl.-Ing. Marion Merklein


Lehrstuhl für Fertigungstechnologie, Egerlandstraße 11, 91058 Erlangen
Tel.: 09131/85 -27140, -28341, Fax: 09131/36 40 3, E-Mail: mn@lft.uni-erlangen.de

Gertraud PickelA |

Weitere Berichte zu: Hitze Laserstrahlumformen Mikrostruktur

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forscher der TU Dresden entwickeln intelligente Therapie-Geräte für Skoliosebehandlung
14.06.2019 | Technische Universität Dresden

nachricht CO2-neutraler Treibstoff aus Luft und Sonnenlicht
13.06.2019 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Automatisiertes Fahren

17.06.2019 | Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Weizensorten bewähren sich auch unter widrigen Anbaubedingungen

17.06.2019 | Agrar- Forstwissenschaften

Inventur in der Synapse

17.06.2019 | Biowissenschaften Chemie

Zellbiologie - Qualitätskontrolle für Mitochondrien

17.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics