Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrowellensender im IPP-Teilinstitut Greifswald testet ITER-Bauteil

19.07.2004


Der neue, leistungsstarke Mikrowellensender im Teilinstitut Greifswald des Max-Planck-Instituts für Plasmaphysik (IPP) wurde genutzt, um einen Hohlleiter zur Einkopplung von Mikrowellen in das Plasma des geplanten internationalen Testreaktors ITER zu testen. Wissenschaftler aus mehreren europäischen Fusionslaboratorien waren an dem Prüfprogramm beteiligt. Der Sender ist für die Plasmaheizung im Fusionsexperiment Wendelstein 7-X bestimmt, das zur Zeit in Greifswald aufgebaut wird.


Blick in den Wellenleiter: Die Computersimulation macht den Zick-Zack-ähnlichen Durchgang der Mikrowelle durch den Hohlleiter sichtbar. (Bild: B. Plaum, IPF Stuttgart)



Ziel der Fusionsforschung ist es, ein Kraftwerk zu entwickeln, das - ähnlich wie die Sonne - aus der Verschmelzung von Atomkernen Energie gewinnt. Um das Fusionsfeuer zu zünden, muss der Brennstoff, ein Wasserstoffplasma, in Magnetfeldern wärmeisolierend eingeschlossen und auf Temperaturen über 100 Millionen Grad aufgeheizt werden. Nächster großer Schritt ist die internationale Testanlage ITER (lat.: "der Weg"). Mit einer Fusionsleistung von 500 Megawatt - zehnmal mehr, als zur Aufheizung des Plasmas verbraucht wird - soll ITER zeigen, dass Energieerzeugung durch Fusion möglich ist. Die Anlage wurde von Forschern aus Europa, Japan, Russland und den USA vorbereitet, China und Südkorea haben sich dem Projekt angeschlossen.



Die Aufheizung des ITER-Plasmas soll unter anderem ein leistungsstarkes Mikrowellen-System mit 24 Megawatt Leistung übernehmen. Auch zur Unterdrückung von Instabilitäten im Plasma sind die Mikrowellen geeignet. Dazu müssen die Strahlen gezielt an unterschiedliche Orte im Plasma gelenkt werden können. Diese Aufgabe sollen Wellenleiter erfüllen - rechteckige metallische Rohre, die in das Innere des Plasmagefäßes führen. Richtig gebaut, werden die Wellen zwischen den gegenüberliegenden Wänden dieser Rohre Zick-Zack-ähnlich nach vorne reflektiert. Dabei verlassen sie das Rohr unter dem gleichen Winkel, mit dem sie eingestrahlt wurden. In sicherer Entfernung vom heißen Plasma kann so mit beweglichen Spiegeln der Eintrittswinkel eingestellt und der Strahl "ferngesteuert" um rund 10 Grad im Plasma geschwenkt werden.

An der Überprüfung dieses neuartigen Konzepts wird in Japan und Europa gearbeitet. Die Koordinationsstelle für die europäischen ITER-Beiträge, das European Fusion Development Agreement (EFDA), hat hierzu ein ausgefeiltes Testprogramm in Auftrag gegeben. Erster Schritt: Im Institut für Plasmaforschung (IPF) der Universität Stuttgart wurde ein vereinfachtes Modell des Hohlleiters berechnet und gebaut. Das rund 7 Meter lange Teststück aus Aluminium besitzt einen quadratischen Innenquerschnitt von 6 mal 6 Zentimetern und eine kompliziert geriffelte innere Oberfläche. Die IPF-Wissenschaftler sind bereits maßgeblich an der Entwicklung des Mikrowellen-Übertragungssystems für die Plasmaheizung des Fusionsexperiments Wendelstein 7-X beteiligt, das gegenwärtig in Greifswald aufgebaut wird. Zweiter Schritt: die Hochleistungs-Experimente in Greifswald. Als Teil des geplanten 10 Megawatt-Mikrowellensystems zur Heizung des Wendelstein-Plasmas steht hier seit letzten November das erste von insgesamt 10 Gyrotrons zur Verfügung. Im Auftrag des IPP wurde es vom Forschungszentrum Karlsruhe gemeinsam mit weiteren europäischen Forschungsinstituten und Industrieunternehmen entwickelt. Die Mikrowellen-Frequenz von 140 Gigahertz liegt sehr nahe an der ITER-Frequenz von 170 Gigahertz. Mit 1000 Kilowatt Leistung ist es der leistungsstärkste kontinuierlich laufende Mikrowellensender weltweit.

Die verfügbare Leistung ist insbesondere ausreichend, um prüfen zu können, ob das ITER-Teststück unter Hochleistungsbedingungen korrekt arbeitet. Auch Übertragungsverluste und Strahlqualität wollte man in dem für ITER relevanten Betriebsbereich ausmessen. Dazu brachten die Wissenschaftler einen 500 Kilowatt-Mikrowellenstrahl mit Spezialspiegeln in ITER-ähnliche Form und lenkten ihn in den Hohlleiter. Beim Durchgang der Welle durch den Hohlleiter erwärmen sich die Reflexionsstellen. Der Weg der Welle durch den Leiter kann so von außen mit einer Infrarotkamera gemessen und mit den Modellrechnungen verglichen werden.

Die Experimente liefen in Zusammenarbeit mit Kollegen aus den Niederlanden und Italien, die einen Absorber für die Mikrowellen bzw. die zugehörige Leitungsmesstechnik beisteuerten. Ergebnis: Das Testobjekt erwies sich als über Erwarten belastbar; alle berechneten Eigenschaften konnten bestätigt werden. Nach diesem erfolgreichen Funktionstest kann nun der dritte Prüfschritt eingeleitet werden: In den Niederlanden ist der Bau eines originalgetreuen Prototyps geplant - wassergekühlt und vakuumtauglich, in Original-Abmessung und -Material.

Isabella Milch | idw
Weitere Informationen:
http://www.ipp.mpg.de

Weitere Berichte zu: Hohlleiter ITER Mikrowelle Mikrowellensender Welle

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Optimierungspotenziale bei Kaminöfen
21.09.2018 | Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe (TFZ)

nachricht Using hydrogen, methane and methanol to reduce CO2 emissions
19.09.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics