Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Batterie läuft mit Körperflüssigkeit

12.11.2002


Biokraftstoff-Zelle erhält Antrieb durch metabolische Energie



Menschen könnten eines Tages elektronische Implantate selbst antreiben. Chemiker der University of Texas/Austin haben eine Mini-Batterie entwickelt, die mit Körperflüssigkeiten betrieben werden könnte, um Sensoren zur Überwachung des Gesundheitszustandes in Gang zu bringen. Die Biokraftstoff-Zelle könnte in Kontakt mit Glukose-haltigen Körperflüssigkeiten unter die Haut oder in das Rückenmark eingesetzt werden. Die Batterie produziert Strom aus der Glukose-Sauerstoff-Reaktion, berichtet das Fachblatt Nature.



Batterien, die mit biologischen Flüssigkeiten betrieben werden, sind keine neue Idee. Bereits vor 40 Jahren wurden Geräte entwickelt, die Energie aus der Glukose-Sauerstoff-Reaktion erhalten. Aber um in der Medizin Verwendung zu finden, müssen diese Zellen klein sein und bei der Temperatur, dem Säuregehalt und der Salzkonzentration des Blutes funktionieren. Darüber hinaus sollten die Zellen noch genügend Strom produzieren. Adam Heller und Kollegen behaupten, dass ihre Entwicklung alle Anforderungen erfüllt.

Die Zelle enthält zwei Kohlenstoff-Fasern mit zwei Zentimetern Länge und einem Siebentausendstel Millimeter Breite. Jede Faser ist mit einem Katalysator umhüllt, der die chemische Reaktion der Glukose-Verbrennung beschleunigt. Die Reaktion findet an beiden Elektroden statt. Eine Elektrode ist mit einem Kunststoff (Polymer) und dem Enzym Glukoseoxidase ummantelt. Das Enzym entzieht der Glukose Elektronen und das Polymer bildet eine elektronische Verbindung zwischen dem Enzym und der Kohlenstoff-Faser. Auf der anderen Elektrode fügt ein Polymer-verbundenes Enzym Elektroden an den gelösten Sauerstoff. Im Laufe der Reaktion werden die Elektronen in den Stromkreislauf gebracht.

Das Gerät soll bei einer Temperatur bzw. Alkalität nahe dem Blut mit einer Temperatur von rund 37 Grad Celsius und einem pH-Wert von 7.2 laufen. Dabei produziert die Batterie ähnlich viel Energie wie eine Armbanduhr-Batterie mit 1,9 Mikrowatt. "Dies reicht aus, um einen Mini-Glukosesensor für die Diabeteskontrolle anzutreiben", erklärte Heller. Für den Antrieb eines künstlichen Herzens reicht die Batterie aber nicht aus. "Dafür ist das Gerät zu schwach und zu kurzlebig. Zurzeit verliert die Batterie täglich rund sechs Prozent ihre Kraft", so der Entwickler. Für Forschungszwecke eignete sie sich aber perfekt. Die Batterien könnten für einige Tage auf Insekten und Tieren angebracht werden. Im nächsten Schritt gilt es aber, die Biokraftstoff-Zellen weiterzuentwickeln, da echte Körperflüssigkeiten komplizierter als die Modell-Flüssigkeit, die Forscher bisher benutzten, sind.

Sandra Standhartinger | pressetext.austria
Weitere Informationen:
http://www.utexas.edu
http://www.nature.com

Weitere Berichte zu: Batterie Elektrode Enzym Körperflüssigkeit

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schlaflos wegen Handy? Neue Displays könnten Abhilfe schaffen
21.06.2018 | Universität Basel

nachricht Sensoren auf Gummibärchen: Team druckt Mikroelektroden-Arrays auf weiche Materialien
21.06.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics