Die GSI hat einen neuen Hochleistungs-Laser in Betrieb genommen. Wissenschaftler haben an der GSI nun die weltweit einzigartige Möglichkeit, Laserstrahlen und Ionenstrahlen, die in der bestehenden Beschleunigeranlage produziert werden, in Experimenten miteinander zu kombinieren.
So lässt sich Materie im Extremzustand erforschen, wie sie in Sternen oder im Inneren von großen Planeten, zum Beispiel dem Jupiter, vorkommt. In der vergangenen Woche führten Wissenschaftler der GSI und der Technischen Universität Darmstadt erfolgreich das erste Experiment durch. Dies ist der Auftakt für die Erschließung eines neuen wissenschaftlichen Arbeitsfeldes.
Der neue Laser Phelix (Petawatt High-Energy Laser for Ion Experiments) gehört zu den stärksten Lasern weltweit. Er kann Laserpulse mit Energien bis zu 1000 Joule und Laserpulse mit Leistungen bis zu einem halben Petawatt liefern. Die Leistung ist Trillionen Mal, das heißt Milliarden mal Milliarden Mal, höher als bei einem Laserpointer oder einem Laser in einem CD-Spieler.
Phelix hat solche Ausmaße, dass er in einem eigenen Gebäude von der Größe eines zweistöckigen Wohnhauses komplett unter Reinraumatmosphäre untergebracht ist. Der Laserstrahl, der einen Durchmesser von 30 cm besitzt, wird mit Spezial-Spiegeln zum Experimentierplatz am Ionenbeschleuniger geleitet und dort auf einen Punkt verdichtet. Nur etwa alle 1 ½ Stunden kann ein Laserpuls erzeugt werden.
Der Aufbau erfolgte in internationaler Zusammenarbeit unter Führung der GSI. Die Bauzeit betrug etwa acht Jahre. Während der Bauphase traten unerwartete technische Probleme auf, die das Projekt verzögerten, zum Beispiel bei der Produktion der großflächigen Spezial-Spiegel, mit denen der Laserstrahl geführt wird.
"Wir sind froh, dass wir alle technischen Problemen gemeistert haben und es nun geschafft haben, das erste Experiment durchzuführen, in dem wir Hochenergie-Laserstrahlen mit Ionenstrahlen kombinieren konnten. Wir freuen uns auf die vielen spannenden Experimente in den kommenden Jahren", sagt Professor Klaus Witte, der Phelix-Projektleiter an der GSI.
Mit dem Laser Phelix können in Kombination mit der Beschleunigeranlage für Ionen an der GSI weltweit einzigartige Experimente durchgeführt werden. Ziel ist es, Materie zu erforschen, wenn sie als so genanntes Plasma vorliegt. Plasma ist ein Aggregatzustand neben den bekannteren Aggregatzuständen fest, flüssig und gasförmig, die Materie auf der Erde annehmen kann. Dabei ist die Atomhülle ganz oder teilweise von den Atomkernen getrennt. Dies ist nur unter Extrembedingungen, das heißt vor allem hohen Temperaturen möglich, wie sie in Sternen oder im Inneren des Jupiter vorherrschen. Aus dem Alltag sind uns weniger energiereiche Plasmen bekannt, wie zum Beispiel eine Kerzenflamme oder Blitze bei einem Gewitter.
Im jüngsten Experiment beschossen Wissenschaftler der GSI und der TU Darmstadt mit dem Laser Phelix eine Materialprobe aus Kohlenstoff, sodass sich der Kohlenstoff in ein Plasma umwandelte. Bruchteile von Sekunden später beschossen sie das Plasma mit Ionenstrahlen aus Schwefel. Die Analyse der dabei auftretenden Reaktionen erlaubt es, die Eigenschaften des Plasmas zu erforschen. Auch das Umgekehrte ist in Zukunft geplant: die Erzeugung eines Plasma mit Ionenstrahlen und die Analyse mit Laserstrahlen.
Dr. Ingo Peter | idw
Weitere Informationen:
http://www.gsi.de
http://www.gsi.de/portrait/Pressemeldungen/16052008.html
Weitere Berichte zu: > Ionenstrahl > Laser > Laserpuls > Laserstrahl
Gleichstrom für die Fabrik der Zukunft
06.12.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Bis zu 30 Prozent mehr Kapazität für Lithium-Ionen-Akkus
05.12.2019 | Karlsruher Institut für Technologie
Die Umwandlung von Sonnenlicht in chemische Energie ist für das Leben unerlässlich. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftlerinnen und Wissenschaftler diesen komplexen Prozess an einem Bestandteil eines Bakteriums nachgeahmt – am Computer, Atom um Atom. Die Arbeit, die jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht wurde, ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt.
Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of...
University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making
In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...
Beim Schlichtfräsen komplexer Freiformflächen können Kreissegment- oder Tonnenfräswerkzeuge jetzt ihre Vorteile gegenüber herkömmlichen Werkzeugen mit Kugelkopf besser ausspielen: Das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen entwickelte im Forschungsprojekt »FlexiMILL« gemeinsam mit vier Industriepartnern passende flexible Bearbeitungsstrategien und implementierte diese in eine CAM-Software. Auf diese Weise lassen sich große frei geformte Oberflächen nun bis zu 80 Prozent schneller bearbeiten.
Ziel im Projekt »FlexiMILL« war es, für die Bearbeitung mit Tonnenfräswerkzeugen nicht nur neue, verbesserte Werkzeuggeometrien zu entwickeln, sondern auch...
Durch Untersuchungen struktureller Veränderungen während der Synthese von Kathodenmaterialen für zukünftige Hochenergie-Lithium-Ionen-Akkus haben Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und kooperierender Einrichtungen neue und wesentliche Erkenntnisse über Degradationsmechanismen gewonnen. Diese könnten zur Entwicklung von Akkus mit deutlich erhöhter Kapazität beitragen, die etwa bei Elektrofahrzeugen eine größere Reichweite möglich machen. Über die Ergebnisse berichtet das Team in der Zeitschrift Nature Communications. (DOI 10.1038/s41467-019-13240-z)
Ein Durchbruch der Elektromobilität wird bislang unter anderem durch ungenügende Reichweiten der Fahrzeuge behindert. Helfen könnten Lithium-Ionen-Akkus mit...
Höhere Atmosphärenschichten werden für Klimaforscher immer interessanter. Bereiche oberhalb von 40 km sind allerdings nur mit Höhenforschungsraketen direkt zugänglich. Ein LIDAR-System (Light Detection and Ranging) mit einem diodengepumpten Alexandritlaser schafft jetzt neue Möglichkeiten. Wissenschaftler des Leibniz-Instituts für Atmosphärenphysik (IAP) und des Fraunhofer-Instituts für Lasertechnik ILT entwickeln ein System, das leicht zu transportieren ist und autark arbeitet. Damit kann in Zukunft ein LIDAR-Netzwerk kontinuierlich und weiträumig Daten aus der Atmosphäre liefern.
Der Klimawandel ist in diesen Tagen ein heißes Thema. Eine wichtige wissenschaftliche Grundlage zum Verständnis der Phänomene sind valide Modelle zur...
Anzeige
Anzeige
QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien
04.12.2019 | Veranstaltungen
03.12.2019 | Veranstaltungen
Intelligente Transportbehälter als Basis für neue Services der Intralogistik
03.12.2019 | Veranstaltungen
RNA-Modifikation - Umbau unter Druck
06.12.2019 | Biowissenschaften Chemie
06.12.2019 | Geowissenschaften
Verstopfung in Abwehrzellen löst Entzündung aus
06.12.2019 | Biowissenschaften Chemie