Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Haltung bewahren in der Mikrowelt - Fraunhofer IZM entwickelt elektrostatischen Träger für ultradünne Wafer

08.05.2008
Mikrochips werden klassischerweise auf Silizium-Scheiben - den Wafern - prozessiert. Doch für einige Anwendungen sind die Wafer mittlerweile so dünn, dass Ihre Handhabung für viele Firmen zum Problem wird.

Eine elegante Lösung für die Herstellung extrem dünner mikroelektronischer Komponenten, die Realisierung von verlustarmen Leistungselektronik-Bausteinen oder die Entwicklung von 3D-integrierten Chip-Aufbauten hat nun das Fraunhofer IZM entwickelt.

Mobile elektrostatische Träger für die Prozessierung ultradünner Wafer
Die Technik ist deshalb besonders interessant, weil durch sie auch dünnste Wafer im Dickenbereich von 20 - 50 µm in den vorhandenen Prozessanlagen der Halbleiterindustrie weiterprozessiert werden können. Dazu werden die gedünnten bzw. die zu dünnenden Produkt-Wafer auf einen spezifisch präparierten Träger-Wafer gelegt und anschließend durch Aufladen einer großflächigen Elektrodenstruktur elektrostatisch fixiert.

Es hat sich gezeigt, dass bei Auswahl einer geeigneten dielektrischen Beschichtung auf dem Träger-Substrat eine lang andauernde elektrische Polarisierung erzielt wird. Der dünne Wafer bleibt somit auch nach Abkopplung der Ladespannung sicher auf dem Träger fixiert und kann weitere Prozessschritte durchlaufen. Nach Beendigung der Fertigungssequenz wird die Elektrodenstruktur entladen, und der gedünnte Wafer kann leicht wieder entfernt werden.

Da für diese neue Trägertechnik keine polymeren Klebstoffe benötigt werden, sind nach dem Ablösen des zu bearbeitenden Wafers auch keine Reinigungsprozeduren erforderlich.

Das Trägersubstrat selbst ist ein Silizium-Wafer, der in Dünnfilmtechnik strukturiert und an der Kontaktfläche zum fixierten dünnen Wafer vollständig elektrisch isoliert ist. Die Kontaktstellen zum Aufladen der Elektroden können an der Vorder- oder Rückseite des Trägersubstrats realisiert werden.

Im Gegensatz zu anderen Trägermaterialien, wie z.B. Glas, Saphir oder Keramik, bietet Silizium die entscheidenden Vorteile einer sehr guten Wärmeleitfähigkeit und, im Falle der Handhabung von dünnen Silizium-Wafern, auch einen ideal angepassten Wärmeausdehnungskoeffizient.

Einsatzmöglichkeiten
Die elektrostatische Haltekraft ist auch bei Temperaturen über 400 °C noch aktiv. Somit bietet diese Trägertechnik erstmals die Möglichkeit, Prozessschritte an sehr dünnen Wafern bei hohen Temperaturen auszuführen. Beispiele hierfür sind das Legieren von Rückseitenmetallisierungen oder das Aufbringen und Plasma-Ätzen von dielektrischen Schichten.

Potenzielle Anwendungsgebiete der elektrostatischen Trägertechnik sind neben der Leistungselektronik auch opto-elektronische Produkte, Bumping-Prozesse an dünnen Wafern, die Herstellung noch dünnerer Solarzellensubstrate und viele weitere Technologiefelder, bei denen fragile Substrate prozessiert werden sollen.

Kontakt:
Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM
Institutsteil München
Hansastraße 27 d
80686 München
URL: www.izm.fraunhofer.de
Christof Landesberger
Tel.: 089/54759 295
Fax: 089/54759 100
Mail: christof.landesberger@izm-m.fraunhofer.de

Georg Weigelt | idw
Weitere Informationen:
http://www.izm.fraunhofer.de
http://www2.izm.fhg.de/Bilder/traeger.zip
http://www.izm.fhg.de/news_events/news/index.jsp

Weitere Berichte zu: Trägersubstrat Trägertechnik

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Chillventa 2018: Fraunhofer ISE rückt Wärmepumpen in den Fokus
12.10.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Mikro-Energiesammler für das Internet der Dinge
11.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sinneswahrnehmung ist keine Einbahnstraße

17.10.2018 | Biowissenschaften Chemie

Space Farming dank Pflanzenhormon Strigolacton

17.10.2018 | Agrar- Forstwissenschaften

Oberflächen mit flexiblen und handlichen Plasmaquellen aktivieren

17.10.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics