Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Batterie der Zukunft: Wissenschafter der TU Graz forschen an extrem schnellen Ionenleitern

15.07.2013
Erst seit April 2013 forschen Experten am Christian-Doppler-(CD)-Labor für Lithium-Batterien am Institut für Chemische Technologien von Materialien der TU Graz an den Batterien der Zukunft – und lassen bereits jetzt mit wegweisenden Ergebnissen aufhorchen

Mittels detaillierter Kernresonanzmessungen konnten sie die ultraschnelle atomare Dynamik eines hervorragenden Ionenleiters, der sich etwa für Festkörper-Batterien eignet, nachweisen. Feststoff-Lithium-Ionenbatterien gelten in punkto Speicherkapazität, Langlebigkeit und Sicherheit als große Hoffnungsträger. Die Ergebnisse der Doktorarbeit von Viktor Epp wurden kürzlich im renommierten Journal of Physical Chemistry Letters veröffentlicht.


Das CD-Labor der TU Graz untersucht ultraschnelle Ionenleiter für die Batterien der Zukunft. Im Bild: Testzellen für die elektrochemische Untersuchung von Lithium-Ionenbatterien.
TU Graz/ICTM

Nicht nur der nachhaltige Erfolg der Elektromobilität, auch die Entwicklung leistungsstärkerer Handys oder Notebooks stellen hohe Anforderungen an Batteriesysteme, die bei erhöhter Speicherkapazität und gleichbleibender Sicherheit immer langlebiger werden sollen. Feststoff-Lithium-Ionenbatterien zählen zu den Hoffnungsträgern in der Batterieforschung. Im Vergleich zu konventionellen Lithium-Ionenbatterien mit flüssigen Elektrolyten haben diese sogenannten „all-solid-state Batterien“ die Nase vorne, was Sicherheit, Lebensdauer und Temperaturbeständigkeit anbelangt.

Forscher aus den Bereichen Festkörperchemie, Physik und Materialwissenschaft suchen daher weltweit unter Hochdruck nach geeigneten Festkörper-Ionenleitern für den Einsatz in solchen Batterien. Viktor Epp vom Institut für Chemische Technologien von Materialien der TU Graz nahm im Rahmen seiner Dissertation das Sulfid Li6PS5Br genauer unter die Lupe, das in der Arbeitsgruppe von Hans-Jörg Deiseroth an der Universität Siegen präpariert wurde.

Mit der Methode der Lithium-Kernspinresonanzspektroskopie, wie sie im CD-Labor von der Arbeitsgruppe rund um Martin Wilkening betrieben wird, kam er zu einem erstaunlichen Ergebnis, das nun frühere, vorläufige Arbeiten bestätigt: Die Lithium-Ionen im untersuchten Sulfid bewegen sich unglaublich schnell. Damit qualifiziert sich Li6PS5Br als Spitzenreiter unter den Festelektrolyten, die für die Anwendung in Feststoffbatterien in Frage kommen.

„Hüpfende“ Atome: eine Milliarde Platzwechsel pro Sekunde

Die beobachteten „Hüpfprozesse“ der Atome in Li6PS5Br erwiesen sich als bemerkenswert: Mit Raumtemperatur-Sprungraten von mehr als einer Milliarde Platzwechsel pro Sekunde haben die Ionen im untersuchten Sulfid eine extrem hohe atomare Beweglichkeit. Auch in anderen Lithium-Verbindungen wurde eine solche Beweglichkeit nachgewiesen – allerdings sind viele der Materialien nicht nur ionisch, sondern auch elektronisch leitend und kommen daher für den Einsatz als Festelektrolyt nicht in Frage. Auf den ersten Blick funktioniert das Grundprinzip der elektrochemischen Energiespeicherung in einer Lithium-Ionenbatterie relativ einfach. Die Ionen bewegen sich während des Ladens und Entladens der Batterie zwischen den beiden Polen und durchqueren dabei strukturell unterschiedliche Materialien.

Bei einer Feststoff-Lithium-Ionenbatterie übernimmt ein Festkörper, wie zum Beispiel ein lithiumhaltiges Oxid oder ein Sulfid, die Rolle des leitenden Elektrolyten. „Je mehr wir über die Natur des Ladungsträgertransportes in Festkörpern wissen, desto klarer wird, welche Materialien sich optimal für die zukünftige Weiterentwicklung von Batterien eignen“, erklärt Martin Wilkening, der sich mit seinem Team im CD-Labor der Untersuchung von Mikrostrukturen und dynamischen Prozessen in neuen Batteriematerialien verschrieben hat.

Publikation im Journal of Physical Chemistry Letters:
“Highly Mobile Ions: Low Temperature NMR Directly Probes Extremely Fast Li+ Hopping in Argyrodite-type Li6PSe5Br”; V. Epp, O. Gün, H.-J. Deiseroth, M. Wilkening, J. Phys. Chem. Lett., 4 (2013) 2118.
Rückfragen:
Univ.-Prof. Dr.rer.nat. Martin Wilkening
Institut für Chemische Technologie von Materialien
E-Mail: wilkening@tugraz.at
Tel.: +43 (0) 316 873 32330
Mobil: +43 (0) 664 88 796 957

Alice Senarclens de Grancy | Technische Universität Graz
Weitere Informationen:
http://www.lithium.tugraz.at

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Energiesparender Spin-Strom über magnetisches Feld und Temperatur steuerbar
17.08.2018 | Johannes Gutenberg-Universität Mainz

nachricht Hitzefrei im Elektromobil: Neuartige Materialien steigern Komfort und Reichweite von E-Fahrzeugen
16.08.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics