Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atomare Untersuchungen verbessern Verständnis der Elektrokatalyse

06.04.2018

Neueste Ergebnisse in Nature Catalysis veröffentlicht

Elektrokatalyse ist ein aus der Industrie nicht wegzudenkender Prozess um elektrische Energie direkt in chemische Energie umzuwandeln. Dies wird zunehmend wichtig, da die Menge an elektrischer Energie welche aus erneuerbaren Quellen erzeugt wird, nur bedingt den täglichen Verbrauchsschwankungen angepasst werden kann.


Elektrokatalyse trifft auf Atomsondentomographie.

O. Kasian, T. Li, Max-Planck-Institut für Eisenforschung GmbH


Dr. Olga Kasian untersuchte die Oberfläche von Iridium-Oxiden mit der Rasterdurchflusszelle, einer Technik die hauptsächlich von Prof. Mayrhofer während seiner Zeit am MPIE entwickelt wurde.

Max-Planck-Institut für Eisenforschung GmbH

Eine Möglichkeit überschüssigen Strom für eine spätere Verwendung zu speichern, ist ihn zum Beispiel zur Wasserstofferzeugung zu verwenden. Wasserstoff ist ein speicherbarer Energieträger mit enormen Potential für die Zukunft. Wasserstoff entsteht durch die elektrochemische Trennung von Wasser in seine Bestandteile Wasserstoff und Sauerstoff. Um diese Trennung zu beschleunigen werden Elektrokatalysatoren verwendet.

Je besser der Katalysator, desto effizienter und schneller ist die sogenannte Wasserelektrolyse. Eine Gruppe aus Wissenschaftlern vom Max-Planck-Institut für Eisenforschung (MPIE), dem Helmholtz Institut Erlangen-Nürnberg für Erneuerbare Energien (HI-ERN), der Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) sowie der Ruhr-Universität Bochum (RUB) haben nun durch die Verwendung von hochaufgelösten Mikroskopiemethoden herausgefunden, dass die ersten atomaren Schichten an der Oberfläche von Elektrokatalysatoren chemische Veränderungen aufweisen, die die Effizienz des Katalysators bestimmen.

Durch die Optimierung der Oberfläche ist es somit möglich die Wasserelektrolyse zu beschleunigen. Dies ist ein wichtiger Schritt in Richtung einer nachhaltigen Wasserstoffwirtschaft. Die neuesten Ergebnisse wurden in der Fachzeitschrift Nature Catalysis veröffentlicht.

Um effizientere Elektrokatalysatoren für die Energieumwandlung zu entwickeln ist ein tiefes Verständnis des Zusammenhangs zwischen Oberflächenzusammensetzung und elektrochemischen Verhalten in operando notwendig. Zum momentanen Stand der Wissenschaft ist die Sauerstoffevolutionsreaktion (englisch: oxygen evolution reaction, OER), also die Spaltung von Wasser in einen seiner Bestandteile Sauerstoff, der bestimmende Schritt der Wasserelektrolyse.

Dies ist zu einem großen Teil der Veränderung der Oberflächenzusammensetzung des Katalysators während dieser Reaktion geschuldet. „Das Element Iridium ist als Elektrokatalysator mit hoher Aktivität und Langzeitstabilität bekannt. Durch die Verwendung von Photoelektronenspektroskopie und einer elektrochemischen Durchflusszelle haben wir bereits Messungen zu elektronischen Eigenschaften, sowie Aktivität und Stabilität des sich bildenden Oberflächenoxids durchgeführt.“, so Dr. Olga Kasian, eine Alexander von Humboldt Stipendiatin am MPIE.

Mit Hilfe der Atomsonde, einem Analysegerät welches nahezu atomgenau ein Material darstellt, untersuchten die Wissenschaftler die Katalysatoren. Betrachtet wurden die besonders interessanten frühen Stadien des Betriebs, in denen eine erhöhte Aktivität festgestellt wurde, sowie die späteren Stadien in denen eine Abnahme des Wasserstoffgehaltes während der Elektrolyse beobachtet wird.

Durch das räumliche Auflösungsvermögen der Atomsonde konnten die dafür verantwortlichen Oberflächenstrukturen dreidimensional abgebildet werden, aufgelöst nach chemischen Elementen. Dr. Baptiste Gault, Gruppenleiter für Atomsondentomographie am MPIE erklärt:

„Unsere Untersuchungen zeigen, dass Oxidcluster sich vermehrt an bestimmten Mikrostrukturen wie zum Beispiel an Korngrenzen, bilden. Nach längerer Wasserelektrolyse konzentrieren sich die Wassermoleküle und Hydroxylgruppen in Oxidclustern und bleiben an der Oberfläche. Dies haben wir durch Markieren mit Isotopen nachgewiesen. Genau diese Oxidcluster sind dafür verantwortlich, dass die Effizienz der Katalysatoren im Laufe der Elektrolyse sinkt.“

Das Team der Werkstoffwissenschaftler und Chemiker kommt daher zum Schluss, dass die Aktivität und Stabilität von Iridium während der OER stark von den nanoskaligen Änderungen der Oberflächenzusammensetzung abhängt.

„Dieser innovative Ansatz, der aus der äußerst effektiven Zusammenarbeit zwischen FAU, HI-ERN, MPIE und RUB entsprungen ist, stellt eine bedeutende Grundlage für die Entwicklung von Materialsystemen und elektrochemischen Reaktoren für die Energieumwandlung und –speicherung dar.“, ergänzt Prof. Dr. Karl J.J. Mayrhofer, Direktor des HI-ERN und Professor für Elektrokatalyse an der FAU.

In der veröffentlichten Arbeit zeigten die Wissenschaftler auch wie die Kombination von elektrochemischen Messungen und Atomsondentomographie das Verständnis der Beziehungen zwischen Oberflächenstruktur, -zustand und -funktion in Elektrokatalyse verbessert werden kann. Dies ist eine Voraussetzung, um Wasserelektrolyse zu einer nachhaltigen Energiespeichertechnologie zu machen.“

Veröffentlichung:
T. Li, O. Kasian, S. Cherevko, S. Zhang, S. Geiger, C. Scheu, P. Felfer, D. Raabe, B. Gault, K. J. J. Mayrhofer: Atomic-scale insights into surface species of electrocatalysts in three dimensions. DOI: 10.1038/s41929-018-0043-3

Weitere Informationen:

https://www.mpie.de/3784842/nature-catalysis-publication

Yasmin Ahmed Salem M.A. | Max-Planck-Institut für Eisenforschung GmbH
Weitere Informationen:
http://www.mpie.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schlaflos wegen Handy? Neue Displays könnten Abhilfe schaffen
21.06.2018 | Universität Basel

nachricht Sensoren auf Gummibärchen: Team druckt Mikroelektroden-Arrays auf weiche Materialien
21.06.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics