Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Computer beim Denken zuschauen

01.02.2017

Neuronale Netze werden heute häufig für die Analyse komplexer Daten eingesetzt – zum Beispiel um in genetischen Informationen Hinweise auf Krankheiten zu entdecken. Letztlich aber weiß niemand, wie diese Netzwerke eigentlich genau arbeiten. Fraunhofer-Forscher haben deshalb eine Software entwickelt, mit der sie in die Black Boxes hineinschauen und deren Arbeitsweise analysieren können. Auf der CeBIT in Hannover stellen die Forscher ihre Software vom 20. bis 24. März 2017 vor (Halle 6, Stand B 36).

Früher war es mühsam, im Computer Fotos zu sortieren. Heute klickt man auf die Gesichtserkennung – und flugs erscheint eine Bildauswahl der Tochter oder des Sohnes. Computer sind inzwischen gut darin, große Datenmengen zu analysieren und nach bestimmten Strukturen wie einem Gesicht auf Bildern zu fahnden. Möglich machen das Neuronale Netze, ein inzwischen etabliertes und ausgefeiltes informationstechnisches Analyseverfahren (siehe Kasten »Die Funktionsweise von Neuronalen Netzen«).


Die Analyse-Software des Fraunhofer HHI visualisiert mit Hilfe von Algorithmen komplexe Lernverfahren (schematische Darstellung).

© Fraunhofer HHI

Das Problem: Nicht nur Forscher wissen heute nicht genau, wie Neuronale Netze Schritt für Schritt arbeiten und wieso sie zu diesem oder jenem Ergebnis kommen. Neuronale Netze sind gewissermaßen Black Boxes, Computerprogramme, in die man Werte einspeist und die zuverlässig Ergebnisse liefern. Will man einem neuronalen Netz etwa beibringen, Katzen zu erkennen, dann lernt man das System an, indem man es mit Tausenden von Katzenbildern füttert.

Wie ein kleines Kind, das langsam versteht, Katzen von Hunden zu unterscheiden, lernt auch das neuronale Netz automatisch. »In vielen Fällen aber interessieren sich Forscher weniger für das Ergebnis, sondern vielmehr dafür, was das neuronale Netz eigentlich tut, wie es zu Entscheidungen kommt«, sagt Dr. Wojciech Samek, Leiter der Forschungsgruppe für Maschinelles Lernen am Fraunhofer Heinrich-Hertz-Institut HHI in Berlin. Samek und seine Kollegen haben deshalb zusammen mit Kollegen von der Technischen Universität Berlin eine Methode entwickelt, mit der man einem neuronalen Netz beim Denken zuschauen kann.

Maßgeschneiderte Krebstherapien dank Maschinellem Lernen

Das ist beispielsweise für die Erkennung von Krankheiten wichtig. Heute kann man Computer beziehungsweise neuronale Netze bereits mit den Erbgut-Daten von Patienten füttern. Das Netzwerk analysiert dann, mit welcher Wahrscheinlichkeit der Patient eine bestimmte genetische Erkrankung hat. »Viel interessanter wäre es aber, wenn wir genau wüssten, an welchen Merkmalen das Programm seine Entscheidungen fest macht«, sagt Samek. Das könnten bestimmte Gendefekte sein, die bei dem Patienten vorliegen – und die wiederum könnten ein möglicher Angriffspunkt für eine individuell auf den Patienten zugeschnittene Krebstherapie sein.

Neuronale Netze im Rückwärtsgang

Mit ihrer Methode können die Forscher die Arbeit der neuronalen Netze rückwärts ablaufen lassen. Sie arbeiten sich damit vom Ergebniswert in umgekehrter Richtung durch das Programm. »Wir können genau sehen, an welcher Stelle eine bestimmte Gruppe von Neuronen eine bestimmte Entscheidung getroffen und wie stark diese zum Ergebnis beigetragen hat«, sagt Wojciech Samek. Dass das Verfahren funktioniert, konnten die Forscher schon mehrfach auf eindrucksvolle Weise zeigen. So haben sie zwei im Internet öffentlich verfügbare Programme verglichen, die beide in der Lage sind, Pferde auf Bildern zu erkennen. Das Ergebnis war verblüffend. Das erste Programm erkannte tatsächlich den Körper der Pferde. Das zweite aber orientierte sich an den Copyright-Zeichen der Fotos, welche Hinweise auf Foren für Pferdeliebhaber oder Reit- und Zuchtvereine gaben, sodass das Programm eine hohe Trefferquote erreichte, obwohl es gar nicht gelernt hatte, wie Pferde aussehen.

Anwendungsfeld Big Data

»Man sieht also, wie wichtig es ist, genau zu verstehen, wie ein solches Netzwerk arbeitet«, sagt Samek. Das sei vor allem auch für die Industrie interessant. »So ist es denkbar, aus den Betriebsdaten einer komplexen Produktionsanlage herauszulesen, welche Parameter die Qualität eines Produktes beeinflussen oder zu Schwankungen bei derselben führen«, sagt Samek. Auch für viele andere Applikationen, bei denen es um die neuronale Analyse großer oder komplexer Datenmengen geht, sei die Erfindung interessant. »In einem anderen Experiment konnten wir zeigen, anhand welcher Parameter ein Netzwerk entscheidet, ob ein Gesicht alt oder jung erscheint.«

Banken analysieren laut Samek seit geraumer Zeit mithilfe neuronaler Netze sogar die Kreditwürdigkeit von Bankkunden. Dafür werden große Mengen von Kundendaten gesammelt und von einem neuronalen Netz bewertet. »Wenn man wüsste, wie das Netz zu seiner Entscheidung kommt, könnte man von vornherein die Menge der Daten reduzieren, indem man die relevanten Parameter auswählt«, so der Experte. Das sei durchaus auch im Interesse der Kunden. Während der Messe CeBIT in Hannover vom 20. bis 24. März 2017 werden die Forscher um Samek zeigen, wie sie mit ihrer Software die Black Boxes neuronaler Netze analysieren – und wie diese aus Gesichtern das Alter oder Geschlecht der Person herauslesen oder Tiere erkennen.

Weitere Informationen:

https://www.fraunhofer.de/de/presse/presseinformationen/2017/februar/dem-compute...

Anne Rommel | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie CeBIT:

nachricht Erster Cloud-Park Deutschlands für energieintensive Edge-Szenarien
13.06.2018 | Rittal GmbH & Co. KG

nachricht Cooling für alle Edge-Szenarien – vom einzelnen Rack bis zum kompletten Datacenter
12.06.2018 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: CeBIT >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics