Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zwischen den Genen lesen

03.06.2016

Unsere Gene entscheiden über vieles in unserem Leben – wie wir aussehen, welche Begabungen wir haben oder welche Krankheiten wir entwickeln. Lange Zeit als „Müll“ abgetan, weiß man inzwischen, dass auch DNA-Bereiche zwischen den Genen wichtige Funktionen haben. Sie sind Sitz eines komplexen Steuerungswerks mit Tausenden von molekularen Schaltern, die die Aktivität unserer Gene regulieren. Doch die regulatorischen Bereiche des Erbguts lassen sich schwer finden. Forscher um Patrick Cramer vom MPI für biophysikalische Chemie und Julien Gagneur von der TU München haben jetzt eine Methode entwickelt, mit der sich regulatorische DNA-Bereiche aufspüren lassen, die aktiv sind und Gene steuern.

Die Gene in unserer DNA enthalten die Baupläne für Proteine, die als „Arbeiter“ praktisch alle Prozesse in unseren Zellen ausführen und steuern. Doch damit jedes Protein zur rechten Zeit am rechten Ort in unserem Körper seine Aufgaben erfüllen kann, muss die Aktivität des dazugehörigen Gens genau kontrolliert werden.


Die TT-Seq-Methode (hier dunkelblau) erlaubt Wissenschaftlern, sich ein sehr viel umfassenderes Bild aller RNA-Moleküle in der Zelle zu machen als es mit bisher existierenden Methoden möglich war.

Margaux Michel, Patrick Cramer / Max-Planck-Institut für biophysikalische Chemie

Diese Funktion übernehmen regulatorische DNA-Bereiche zwischen den Genen, die als hochkomplexes Steuerungswerk fungieren. „Regulatorische DNA-Bereiche sind unter anderem lebenswichtig für die Entwicklung des Menschen, den Erhalt von Geweben und die Immunantwort“, erklärt Patrick Cramer, Leiter der Abteilung Molekularbiologie am Max-Planck-Institut für biophysikalische Chemie.

„Darüber hinaus spielen sie bei vielen Krankheiten eine wichtige Rolle. Krebs- und Herzkreislaufpatienten bespielsweise haben genau in diesen DNA-Abschnitten viele Veränderungen“, so der Biochemiker.

Wenn regulatorische DNA-Bereiche aktiv sind, werden von ihnen zunächst RNA-Kopien erstellt. „Die daraus resultierenden RNA-Moleküle haben für uns Forscher allerdings einen großen Nachteil: Sie werden von der Zelle rasch wieder abgebaut und lassen sich daher bislang nur schwer aufspüren“, berichtet Julien Gagneur, der vor Kurzem mit seiner Gruppe vom Genzentrum der Ludwig-Maximilians-Universität München an die Technische Universität München gewechselt ist.

„Aber gerade die sehr kurzlebigen RNA-Moleküle wirken oft als lebenswichtige molekulare Schalter, die Gene gezielt aktivieren, wenn sie an einem bestimmten Ort des Körpers benötigt werden. Ohne diese Schalter würden unsere Gene nicht funktionieren.“

Anker für kurzlebige molekulare Schalter

Björn Schwalb und Margaux Michel, Mitarbeiter in Cramers Team, ist es gemeinsam mit Benedikt Zacher Gagneurs Gruppe nun gelungen, eine hochempfindliche Methode zu entwickeln, mit der sich auch sehr kurzlebige RNA-Moleküle einfangen und identifizieren lassen – das sogenannte TT-Seq (für englisch: transient transcriptome sequencing). Über die Ergebnisse berichtet das renommierte Wissenschaftsjournal Science in seiner neuesten Ausgabe vom 3. Juni.

Um die RNA-Moleküle einzufangen, verwendeten die drei Nachwuchsforscher einen Trick: Sie verabreichten den Zellen für einige Minuten ein Molekül, das als eine Art Anker wirkt. Die Zellen bauten daraufhin diesen Anker in jede RNA ein, die sie in der Versuchszeit herstellten. Mithilfe des Ankers konnten die Wissenschaftler schließlich auch die kurzlebigen RNA-Moleküle aus der Zelle herausfischen und untersuchen.

„Die so gefundenen RNA-Moleküle stellen eine Momentaufnahme aller DNA-Bereiche dar, die zu einem bestimmten Zeitpunkt in der Zelle aktiv waren – der Gene ebenso wie der bislang schwer auffindbaren regulatorischen Bereiche zwischen den Genen“, erläutert Cramer. „Mit der TT-Seq-Methode haben wir jetzt das geeignete Werkzeug an der Hand, um etwas darüber zu lernen, wie Gene in verschiedenen Zelltypen gesteuert werden und wie genregulatorische Programme arbeiten,“ ergänzt Gagneur.

In vielen Fällen haben Forscher schon eine recht genaue Vorstellung davon, welche Gene bei einer bestimmten Krankheit eine Rolle spielen, kennen aber die daran beteiligten molekularen Schalter nicht. Die Wissenschaftler um Cramer und Gagneur hoffen, mithilfe der neuen Methode dazu beitragen zu können, wichtige Schlüsselmechanismen aufzudecken, die bei der Entstehung und dem Verlauf von Krankheiten eine Rolle spielen. In einem nächsten Schritt möchten sie ihre Methode unter anderem auf Blutzellen anwenden, um den Verlauf einer HIV-Infektion bei AIDS-Patienten besser zu verstehen.

Original-Publikation
Björn Schwalb, Margaux Michel, Benedikt Zacher, Katja Frühauf, Carina Demel, Achim Tresch, Julien Gagneur, Patrick Cramer: TT-Seq maps the human transient transcriptome.
Science 352,1225-1228 (2016), doi: 10.1126/science.aad9841.

Kontakt
Prof. Dr. Patrick Cramer, Abteilung Molekularbiologie
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-2800
E-Mail: patrick.cramer@mpibpc.mpg.de

Prof. Dr. Julien Gagneur, Gruppe Computational Biology
Technische Universität München
Tel.: +49 89 289-19411
E-Mail: gagneur@in.tum.de

Dr. Anne Morbach, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1308
E-Mail: anne.morbach@mpibpc.mpg.de

Weitere Informationen:

http://www.mpibpc.mpg.de/15377722/pr_1620 – Original-Pressemitteilung
http://www.mpibpc.mpg.de/de/cramer – Webseite der Abteilung Molekularbiologie am Max-Planck-Institut für biophysikalische Chemie, Göttingen
http://www.gagneurlab.in.tum.de – Webseite der Gruppe Computational Biology an der Technischen Universität München

Dr. Carmen Rotte | Max-Planck-Institut für biophysikalische Chemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen
15.10.2018 | Universität Rostock

nachricht Bio-Angeln für Seltene Erden: Wie Eiweiß-Bruchstücke Elektronik-Schrott recyceln
15.10.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Materiezustände durch Licht verändern

Forscherinnen und Forscher der Universität Hamburg stören die kristalline Ordnung

Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Neurowoche 2018: 7000 Experten für Gehirn und Nerven tagen in Berlin

15.10.2018 | Veranstaltungen

Berlin5GWeek: Private Industrienetze und temporäre 5G-Inseln

15.10.2018 | Veranstaltungen

PV Days in Halle zeigen neue Chancen für die Photovoltaik

11.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Smart Glasses Guide: Neues Tool zur Auswahl von Datenbrillen und Anwendungen

15.10.2018 | Informationstechnologie

Neurowoche 2018: 7000 Experten für Gehirn und Nerven tagen in Berlin

15.10.2018 | Veranstaltungsnachrichten

Grauer Star: Neues Verfahren bei der Katarakt-Operation

15.10.2018 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics