Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zwischen den Genen lesen

03.06.2016

Unsere Gene entscheiden über vieles in unserem Leben – wie wir aussehen, welche Begabungen wir haben oder welche Krankheiten wir entwickeln. Lange Zeit als „Müll“ abgetan, weiß man inzwischen, dass auch DNA-Bereiche zwischen den Genen wichtige Funktionen haben. Sie sind Sitz eines komplexen Steuerungswerks mit Tausenden von molekularen Schaltern, die die Aktivität unserer Gene regulieren. Doch die regulatorischen Bereiche des Erbguts lassen sich schwer finden. Forscher um Patrick Cramer vom MPI für biophysikalische Chemie und Julien Gagneur von der TU München haben jetzt eine Methode entwickelt, mit der sich regulatorische DNA-Bereiche aufspüren lassen, die aktiv sind und Gene steuern.

Die Gene in unserer DNA enthalten die Baupläne für Proteine, die als „Arbeiter“ praktisch alle Prozesse in unseren Zellen ausführen und steuern. Doch damit jedes Protein zur rechten Zeit am rechten Ort in unserem Körper seine Aufgaben erfüllen kann, muss die Aktivität des dazugehörigen Gens genau kontrolliert werden.


Die TT-Seq-Methode (hier dunkelblau) erlaubt Wissenschaftlern, sich ein sehr viel umfassenderes Bild aller RNA-Moleküle in der Zelle zu machen als es mit bisher existierenden Methoden möglich war.

Margaux Michel, Patrick Cramer / Max-Planck-Institut für biophysikalische Chemie

Diese Funktion übernehmen regulatorische DNA-Bereiche zwischen den Genen, die als hochkomplexes Steuerungswerk fungieren. „Regulatorische DNA-Bereiche sind unter anderem lebenswichtig für die Entwicklung des Menschen, den Erhalt von Geweben und die Immunantwort“, erklärt Patrick Cramer, Leiter der Abteilung Molekularbiologie am Max-Planck-Institut für biophysikalische Chemie.

„Darüber hinaus spielen sie bei vielen Krankheiten eine wichtige Rolle. Krebs- und Herzkreislaufpatienten bespielsweise haben genau in diesen DNA-Abschnitten viele Veränderungen“, so der Biochemiker.

Wenn regulatorische DNA-Bereiche aktiv sind, werden von ihnen zunächst RNA-Kopien erstellt. „Die daraus resultierenden RNA-Moleküle haben für uns Forscher allerdings einen großen Nachteil: Sie werden von der Zelle rasch wieder abgebaut und lassen sich daher bislang nur schwer aufspüren“, berichtet Julien Gagneur, der vor Kurzem mit seiner Gruppe vom Genzentrum der Ludwig-Maximilians-Universität München an die Technische Universität München gewechselt ist.

„Aber gerade die sehr kurzlebigen RNA-Moleküle wirken oft als lebenswichtige molekulare Schalter, die Gene gezielt aktivieren, wenn sie an einem bestimmten Ort des Körpers benötigt werden. Ohne diese Schalter würden unsere Gene nicht funktionieren.“

Anker für kurzlebige molekulare Schalter

Björn Schwalb und Margaux Michel, Mitarbeiter in Cramers Team, ist es gemeinsam mit Benedikt Zacher Gagneurs Gruppe nun gelungen, eine hochempfindliche Methode zu entwickeln, mit der sich auch sehr kurzlebige RNA-Moleküle einfangen und identifizieren lassen – das sogenannte TT-Seq (für englisch: transient transcriptome sequencing). Über die Ergebnisse berichtet das renommierte Wissenschaftsjournal Science in seiner neuesten Ausgabe vom 3. Juni.

Um die RNA-Moleküle einzufangen, verwendeten die drei Nachwuchsforscher einen Trick: Sie verabreichten den Zellen für einige Minuten ein Molekül, das als eine Art Anker wirkt. Die Zellen bauten daraufhin diesen Anker in jede RNA ein, die sie in der Versuchszeit herstellten. Mithilfe des Ankers konnten die Wissenschaftler schließlich auch die kurzlebigen RNA-Moleküle aus der Zelle herausfischen und untersuchen.

„Die so gefundenen RNA-Moleküle stellen eine Momentaufnahme aller DNA-Bereiche dar, die zu einem bestimmten Zeitpunkt in der Zelle aktiv waren – der Gene ebenso wie der bislang schwer auffindbaren regulatorischen Bereiche zwischen den Genen“, erläutert Cramer. „Mit der TT-Seq-Methode haben wir jetzt das geeignete Werkzeug an der Hand, um etwas darüber zu lernen, wie Gene in verschiedenen Zelltypen gesteuert werden und wie genregulatorische Programme arbeiten,“ ergänzt Gagneur.

In vielen Fällen haben Forscher schon eine recht genaue Vorstellung davon, welche Gene bei einer bestimmten Krankheit eine Rolle spielen, kennen aber die daran beteiligten molekularen Schalter nicht. Die Wissenschaftler um Cramer und Gagneur hoffen, mithilfe der neuen Methode dazu beitragen zu können, wichtige Schlüsselmechanismen aufzudecken, die bei der Entstehung und dem Verlauf von Krankheiten eine Rolle spielen. In einem nächsten Schritt möchten sie ihre Methode unter anderem auf Blutzellen anwenden, um den Verlauf einer HIV-Infektion bei AIDS-Patienten besser zu verstehen.

Original-Publikation
Björn Schwalb, Margaux Michel, Benedikt Zacher, Katja Frühauf, Carina Demel, Achim Tresch, Julien Gagneur, Patrick Cramer: TT-Seq maps the human transient transcriptome.
Science 352,1225-1228 (2016), doi: 10.1126/science.aad9841.

Kontakt
Prof. Dr. Patrick Cramer, Abteilung Molekularbiologie
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-2800
E-Mail: patrick.cramer@mpibpc.mpg.de

Prof. Dr. Julien Gagneur, Gruppe Computational Biology
Technische Universität München
Tel.: +49 89 289-19411
E-Mail: gagneur@in.tum.de

Dr. Anne Morbach, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1308
E-Mail: anne.morbach@mpibpc.mpg.de

Weitere Informationen:

http://www.mpibpc.mpg.de/15377722/pr_1620 – Original-Pressemitteilung
http://www.mpibpc.mpg.de/de/cramer – Webseite der Abteilung Molekularbiologie am Max-Planck-Institut für biophysikalische Chemie, Göttingen
http://www.gagneurlab.in.tum.de – Webseite der Gruppe Computational Biology an der Technischen Universität München

Dr. Carmen Rotte | Max-Planck-Institut für biophysikalische Chemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Antibiotika: Neuer Wirkstoff wirkt auch bei resistenten Bakterien
11.11.2019 | Martin-Luther-Universität Halle-Wittenberg

nachricht Kleine RNAs verbinden Immunsystem und Gehirnzellen
11.11.2019 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Im Focus: Göttinger Chemiker weisen kleinstmögliche Eiskristalle nach

Temperaturabhängig gefriert Wasser zu Eis und umgekehrt. Dieser Vorgang, in der Wissenschaft als Phasenübergang bezeichnet, ist im Alltag gut bekannt. Um aber ein stabiles Gitter für Eiskristalle zu erreichen, ist eine Mindestanzahl an Molekülen nötig, ansonsten ist das Konstrukt instabil. Bisher konnte dieser Wert nur grob geschätzt werden. Einem deutsch-amerikanischen Forschungsteam unter Leitung des Chemikers Prof. Dr. Thomas Zeuch vom Institut für Physikalische Chemie der Universität Göttingen ist es nun gelungen, die Größe kleinstmöglicher Eiskristalle genau zu bestimmen. Die Forschungsergebnisse sind in der Fachzeitschrift Proceedings of the National Academy of Science erschienen.

Knapp 100 Wassermoleküle sind nötig, um einen Eiskristall in seiner kleinstmöglichen Ausprägung zu formen. Nachweisen konnten die Wissenschaftler zudem, dass...

Im Focus: Verzerrte Atome

Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Ionen hervorzurufen. Die heftige Anregung des Elektronenpaars in einem Heliumatom konkurriert so stark mit dem ultraschnellen Zerfall des angeregten Zustands, dass vorübergehend sogar Besetzungsinversion auftreten kann. Verschiebungen der Energie elektronischer Übergänge in zweifach geladenen Neonionen beobachteten die Wissenschaftler mittels transienter Absorptionsspektroskopie (XUV-XUV Pump-Probe).

Ein internationales Team unter Leitung von Physikern des MPIK veröffentlicht seine Ergebnisse zur stark getriebenen Zwei-Elektronen-Anregung in Helium durch...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

Automatisiertes Fahren und Recht

06.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Effizienz-Weltrekord für organische Solarmodule aufgestellt

11.11.2019 | Energie und Elektrotechnik

Antibiotika: Neuer Wirkstoff wirkt auch bei resistenten Bakterien

11.11.2019 | Biowissenschaften Chemie

Forschungsprojekt kombiniert Digitalisierung und Verfahrenstechnik

11.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics