Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zuckerstrukturen auf Viren und Tumorzellen blockieren

17.03.2020

Bei einer Virusinfektion gelangen Viren in den Organismus und vermehren sich in den Körperzellen. Viren setzen sich oft gezielt auf die Zuckerstrukturen der Zellen ihres Wirts oder präsentieren ihrerseits charakteristische Zuckerstrukturen auf ihrer Oberfläche. Forschende der Technischen Universität München (TUM) haben ein neuartiges Proteinreagenz zur Erkennung biologischer Zuckerstrukturen entwickelt, das die Ausbreitung einer Erkrankung im Körper blockieren kann, wenn es an die Zuckerstrukturen einer Zelle oder eines Erregers andockt.

Das Labor von Arne Skerra, Professor für Biologische Chemie, beschäftigt sich mit der Herstellung von künstlichen Bindeproteinen, die für therapeutische Zwecke einsetzbar sind.


Prof. Arne Skerra (rechts) und sein Team Dr. Andreas Eichinger und Carina A. Sommer im Labor.

TUM-Lehrstuhl für Biologische Chemie

Aktuelle Forschungsergebnisse des Labors eröffnen nun den Weg zur Entwicklung neuartiger Bindeproteine für biologische Zuckerstrukturen, die sowohl bei Krebs- als auch bei Infektionserkrankungen eine große Rolle spielen.

Erkennung biologischer Zuckerstrukturen

„Die Erkennung von speziellen Zuckermolekülen, so genannten Kohlenhydraten, ist bei vielen biologischen Prozessen von entscheidender Bedeutung“, erklärt Prof. Skerra. Damit der Körper erkennt, wohin welche Zellen gehören oder ob Zellen fremd sind, haben diese häufig einen Marker aus Zuckerketten, die an die Außenseite der Zellmembran oder an Membranproteine geknüpft sind. Auch Krankheitserreger verfügen über eigene Zuckerstrukturen oder können sich daran festsetzen.

Proteine, die vielfältigen Funktionsträger aller Zellen, haben jedoch ganz allgemein eine geringe Affinität gegenüber Zuckern. Deren molekulare Erkennung ist also schwierig.

Grund dafür: Wasser sieht den Zuckermolekülen ähnlich, so dass diese in der wässrigen Umgebung der Zellen quasi getarnt sind. Die Gruppe von Prof. Skerra machte sich auf die Suche nach einem künstlichen Bindeprotein mit einer chemischen Gruppierung, die die biologischen Zuckerstrukturen leichter erkennen lässt.

Borsäuregruppe als Aminosäure in Protein eingebaut

Aminosäuren sind die Bausteine der Proteine. Üblicherweise nutzt die Natur für die Vielfalt der Proteine nur 20 Aminosäuren. „Mit den Mitteln der Synthetischen Biologie nutzten wir zusätzlich eine künstliche Aminosäure“, berichtet Forscherin Carina A. Sommer.

„Uns ist es gelungen, eine Borsäuregruppe, die von sich aus Affinität zu Zuckermolekülen hat, gezielt in die Aminosäurekette eines Proteins einzubauen. Damit haben wir eine grundlegende neue Klasse von Bindeproteinen für Zuckermoleküle kreiert“, erklärt Sommer. Diese künstliche Zuckerbindefunktion ist natürlichen Bindeproteinen (so genannten Lektinen) in ihrer Stärke und auch den Möglichkeiten zur spezifischen Ausgestaltung überlegen.

„Die Zucker-Bindungsaktivität von Borsäure und ihren Derivaten ist seit fast einem Jahrhundert bekannt“, sagt Prof. Skerra. „Borsäure ist in der unbelebten Natur verbreitet und kaum toxisch, aber sie wird von Organismen bislang praktisch nicht genutzt.“

„Mit Hilfe der Röntgenstrukturanalyse haben wir es geschafft, die Kristallstruktur eines Modell-Komplexes dieses künstlichen Proteins aufzuklären und konnten damit unser biomolekulares Konzept bestätigen“, erklärt Wissenschaftler Dr. Andreas Eichinger.

Nächster Schritt: Entwicklung für konkrete medizinische Anwendungen

Nach etwa fünf Jahren Grundlagenforschung kann die Entwicklung aus Prof. Skerras Labor nun für konkrete medizinische Anwendungen genutzt werden. „Unsere Erkenntnisse sollten nicht nur die zukünftige Entwicklung von neuartigen Kohlenhydratliganden in der Biologischen Chemie unterstützen, sondern sie ebnen den Weg zu hochaffinen Wirkstoffen zur Ansteuerung oder Blockierung medizinisch relevanter Zuckerstrukturen auf Zelloberflächen“, fasst Prof. Skerra zusammen.

Das „Blockierungsmittel“ könnte beispielsweise bei Erkrankungen zum Einsatz kommen, bei denen starkes Zellwachstum oder das Andocken von Krankheitserregern an Zellen eine Rolle spielt, also in der Onkologie und der Virologie. Wenn es gelingt, die Zuckerbindungsfunktion zu blockieren und die Erkrankung zu bremsen, verschafft man damit dem Immunsystem mehr Zeit, die körpereigene Abwehr vorzubereiten.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Arne Skerra
Technische Universität München
Lehrstuhl für Biologische Chemie
Tel.: +49 (0)8161 71-4351
skerra@tum.de

www.tum.de

Originalpublikation:

Carina A. Sommer, Andreas Eichinger, and Arne Skerra (2020): A Tetrahedral Boronic Acid Diester Formed by an Unnatural Amino Acid in the Ligand Pocket of an Engineered Lipocalin. ChemBioChem 21:469-472. DOI: 10.1002/cbic.201900405

Weitere Informationen:

http://www.wzw.tum.de/bc/ProfSkerra/Skerra.html (Seite des Lehrstuhls für Biologische Chemie)
http://www.professoren.tum.de/en/skerra-arne (Professorenprofil Arne Skerra)
https://onlinelibrary.wiley.com/doi/full/10.1002/cbic.201900405 (Publikation)
https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35947/ (Pressemitteilung der TUM)
https://mediatum.ub.tum.de/1540812 (Bildmaterial zum Download)

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Enzyme als Doppelagenten: Neuer Mechanismus bei der Proteinmodifikation entdeckt
07.07.2020 | Westfälische Wilhelms-Universität Münster

nachricht Wegweiser für die Wundheilung: Erstmals Kleeblattpeptid synthetisiert
07.07.2020 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Im Focus: Robuste Materialien in Schwingung versetzt

Kieler Physikteam beobachtet in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse

In der Physik werden sie zurzeit intensiv erforscht, in der Elektronik könnten sie ganz neue Funktionen ermöglichen: Sogenannte topologische Materialien...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Neues Verständnis der Defektbildung an Silizium-Elektroden

Theoretisch lässt sich das Speichervermögen von handelsüblichen Lithiumionen-Batterien noch vervielfachen – mit einer Elektrode, die auf Silizium anstatt auf Graphit basiert. Doch in der Praxis machen solche Akkus mit Silizium-Anoden nach wenigen Lade-Entlade-Zyklen schlapp. Ein internationales Team um Forscher des Jülicher Instituts für Energie- und Klimaforschung hat jetzt in einzigartiger Detailgenauigkeit beobachtet, wie sich die Defekte in der Anode ausbilden. Dabei entdeckten sie bislang unbekannte strukturelle Inhomogenitäten in der Grenzschicht zwischen Anode und Elektrolyt. Die Erkenntnisse sind in der Fachzeitschrift „Nature Communications“ erschienen.

Silizium-basierte Anoden können in Lithium-Ionen-Akkus prinzipiell neunmal so viel Ladung speichern wie der üblicherweise verwendete Graphit, bei gleichem...

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Social Learning in der Firma und virtuelle Seminarräume für Mitarbeiter

07.07.2020 | Seminare Workshops

„Maschinen-EKG“ soll Umwelt schonen

07.07.2020 | Maschinenbau

Erneuter Weltrekord für speedCIGS

07.07.2020 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics