Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zensus in der Pflanzenwurzel

16.01.2014
Bakterielle Lebensgemeinschaften spiegeln Artzugehörigkeit und Standortvorlieben wider

Pflanzen unterhalten in ihren Wurzeln bakterielle Lebensgemeinschaften, die ihnen zu Diensten sind. Klaus Schläppi und Paul Schulze-Lefert vom Max-Planck Institut für Pflanzenzüchtungsforschung in Köln haben gezeigt, dass diese Lebensgemeinschaften erstaunlich stabil sind und im Kern aus wenigen Bakterienfamilien bestehen. Deren Zusammensetzung hängt von der Zugehörigkeit zu einer Pflanzenfamilie und den Standortvorlieben der Pflanzen ab.


Blattrosette und Wurzelsystem der Ackerschmalwand Arabidopsis thaliana.

© MPI f. Pflanzenzüchtungsforschung/ K. Schläppi


Grünes Licht für bakterielle Lebensgemeinschaften: Bakterien auf der Wurzel von Arabidopsis thaliana (grün). Die Kontur der Pflanzenwurzel erscheint rot.

© MPI f. Pflanzenzüchtungsforschung/ K. Schläppi

Der Erdboden ist das artenreichste mikrobielle Ökosystem der Welt. Ein Teil dieser Bodenbakterien besiedeln auch die Pflanzenwurzeln. Deshalb stellt sich die Frage, ob das mikrobielle Leben in der Wurzel ein Spiegelbild der Bodenflora ist oder ob die Wirtspflanze die Zusammensetzung gezielt beeinflusst. Beherbergt eine Pflanzenfamilie also eine familientypische Auswahl an Bodenbakterien, die bei jedem Vertreter mehr oder weniger gleich ist - egal, wo er gerade Wurzeln geschlagen hat? Schläppi, Schulze-Lefert und ihre Kollegen sind dieser Frage nachgegangen und haben geprüft, wie ähnlich die bakteriellen Lebensgemeinschaften bei unterschiedlich nah verwandten Arten sind. Für diesen Zensus haben sie vier Arten von Kreuzblütengewächsen an zwei natürlichen Standorten und im Gewächshaus untersucht. Die Arten haben sich entwicklungsgeschichtlich vor acht bis 35 Millionen Jahren auseinanderentwickelt.

Bei den Pflanzen handelt es sich um Arabidopsis thaliana und ihre „jüngeren“ Schwesterarten Arabidopsis lyrata und Arabidopsis halleri sowie die „ältere“ Cardamine hirsuta. Arabidopsis thaliana, Arabidopsis lyrata und Cardamine hirsuta mögen keine Nahrungskonkurrenz und kommen an offenen und trockenen Standorten wie Steppen oder Berghängen vor. Arabidopsis halleri kommt auch mit Nahrungskonkurrenz gut zurecht und kann auf feuchten Wiesen leben.

„Wir haben bei unserem Zensus zwei wesentliche Beobachtungen gemacht“, sagt Schläppi zu den Ergebnissen. „Während die eine Hälfte der bakteriellen Gemeinschaft in der Wurzel ein Spiegelbild der von der Umwelt abhängigen Bodenflora ist, finden sich in der anderen Hälfte Bakterien, die davon unabhängig sind. Interessanterweise besteht dieser konservierte Kern aus einer taxonomisch begrenzten Gruppe mit Bakterien aus drei Familien.“ Allerdings gibt es Unterschiede bei der Anzahl der vorhandenen Bakterien. Einige der untersuchten Pflanzen beherbergen mehr von der einen Bakterienfamilie, andere mehr von der anderen Familie. „Das ist unsere zweite wichtige Beobachtung: Diese Unterschiede lassen sich nicht alleine durch die evolutionsgeschichtliche Distanz zwischen den untersuchten Pflanzenarten erklären.“

Die Unterschiede gehen nach Ansicht der Kölner Wissenschaftler auch auf die verschiedenen Standortvorlieben zurück. Arabidopsis thaliana und Arabidopsis lyrata bevorzugen ähnliche Standortortbedingungen, sie haben auch die ähnlichsten mikrobiellen Lebensgemeinschaften. Am engsten miteinander verwandt sind aber Arabidopsis lyrata und Arabidopsis halleri. „Die quantitativen Unterschiede bei den bakteriellen Lebensgemeinschaften haben sehr wahrscheinlich auch mit der arttypischen Anpassung an den Lebensraum zu tun“, erklärt Schläppi.

Ob die Kreuzblütengewächse die drei prominenten Bakterienfamilien gezielt in ihre Wurzel einladen und ihnen eine molekulare Eintrittskarte zuspielen oder ob sich die drei prominenten Bakterienfamilien einfach nur besser gegen ihre Konkurrenten im Boden durchsetzen können, lässt sich derzeit noch nicht beantworten. Schläppi und seine Kollegen vermuten, dass beide Prozesse eine Rolle spielen. Vor allem die Konkurrenz wird nicht zu unterschätzen sein, denn Pflanzen sind für alle Arten von Bakterien attraktiv. Die Gewächse scheiden nämlich einen Teil ihres bei der Fotosynthese hergestellten Zuckers durch die Wurzel in den Boden aus. „Natürlich wollen alle Bakterien an diese Zuckertöpfe“, sagt Schläppi. „Wir gehen davon aus, dass die Pflanzen von den wurzelassoziierten Bakterien wertvolle Dienste als Gegenleistung erhalten. Sonst würde die Symbiose nicht funktionieren.“

Welche Dienstleistungen das sein werden, wollen die Wissenschaftler als nächstes klären. Zwei sind offensichtlich: Die Bakterien helfen den Pflanzen an bestimmte Nährstoffe heranzukommen, wie etwa an lösliches Phosphat oder sie helfen ihnen, im Boden herumlungernde Krankheitserreger auf Distanz zu halten.

Ansprechpartner
Prof. Dr. Paul Schulze-Lefert
Max-Planck-Institut für Pflanzenzüchtungsforschung, Köln
Telefon: +49 221 5062-350
Fax: +49 221 5062-353
E-Mail: schlef@mpipz.mpg.de
Dr. Klaus Schläppi
Telefon: +41 44 377-7292
E-Mail: klaus.schlaeppi@agroscope.admin.ch
Originalpublikation
Klaus Schlaeppi et al.
Quantitative divergence of bacterial root microbiota in Arabidopsis thaliana relatives.

PNAS, online vorab veröffentlicht, 30. Dezember 2013 (doi: 10.1073/pnas.1321597111)

Dr. Klaus Schläppi | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7723108/bakterien_pflanzenwurzel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues aus der Schaltzentrale
18.07.2018 | Karl-Franzens-Universität Graz

nachricht Chemische Waffe durch laterale Gen-Übertragung schützt Wollkäfer gegen schädliche Pilze
18.07.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Superscharfe Bilder von der neuen Adaptiven Optik des VLT

18.07.2018 | Physik Astronomie

Schonend, schnell und präzise: Innovative Herz-Bildgebung in Freiburg

18.07.2018 | Medizintechnik

Chemische Waffe durch laterale Gen-Übertragung schützt Wollkäfer gegen schädliche Pilze

18.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics