Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellwachstum reguliert genetische Schaltkreise

27.01.2010
Genetische Schaltkreise kontrollieren die Aktivität von Genen und damit die Funktion von Zellen und Organismen.

Wissenschaftler vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam und der University of California in San Diego zeigen, wie Wachstumseffekte die genetischen Schaltkreise in einer Bakterienzelle beeinflussen. Demnach können Gene auch ohne Regulierung unterschiedlich aktiv sein - je nachdem, ob sie in schnell oder langsam wachsenden Zellen in Proteine übersetzt werden. Mit diesen Ergebnissen können die Forscher besser verstehen, wie Zellen ihre Gene regulieren, und so künftig künstliche genetische Schaltkreise entwickeln. (Cell, 24. Dezember 2009)

Schaltkreise kommen nicht nur in CD-Playern, Kaffeemaschinen oder Autos vor, sondern auch in lebenden Zellen - in diesem Fall als "genetische Schaltkreise". Sie bestehen aus einem Netzwerk unterschiedlicher Gene, die sich gegenseitig stimulieren oder hemmen können. Mit Hilfe solcher Schaltkreise kann eine Zelle Gene an- oder abschalten und so kontrollieren, welche Proteine sie produziert. Genetische Schaltkreise hängen jedoch auch von der Zelle als Ganzes ab, die ausreichend Ressourcen für die Bildung von Proteinen zur Verfügung stellen muss. So kann das Standard-Laborbakterium Escherichia coli seine optimale Generationszeit von 20 Minuten auf bis zu einige Stunden ausdehnen, wenn die Nahrung knapp ist. Dies verändert nahezu alle Eigenschaften der Bakterienzellen, wie Größe oder chemische Zusammensetzung.

Proteinkonzentration unregulierter Gene sinkt bei schnellerem Wachstum

Die Wissenschaftler demonstrieren mit einem Theoriemodell sowie einfachen synthetischen genetischen Schaltkreisen in Bakterien, dass die Wachstumsgeschwindigkeit die Aktivität von Genen und damit die genetischen Schaltkreise entscheidend beeinflusst. "Wir haben uns gefragt, wie die Aktivität eines hypothetischen Gens, das überhaupt nicht reguliert wird, vom Wachstum eines Bakteriums abhängt. Dieser Zusammenhang muss nämlich berücksichtigt werden, wenn man in Experimenten eine Änderung der Genexpression feststellt", sagt Stefan Klumpp, Nachwuchsgruppenleiter am Max-Planck-Institut für Kolloid- und Grenzflächenforschung.

Veränderungen innerhalb der Zelle wirken sich auf mehrere Arten auf die Konzentration an Proteinen aus. So sind in schneller wachsenden Zellen mehr RNA-Polymerasen für die Transkription von Genen vorhanden. Auf diese Weise kann das Gen häufiger ausgelesen werden. Gleichzeitig steht aber weniger Zeit zur Verfügung, um das Protein vor der nächsten Zellteilung anzureichern. Zudem sind schneller wachsende Zellen größer, was bei gleicher Anzahl von Proteinmolekülen eine geringere Konzentration zur Folge hat. Die Wissenschaftler integrierten alle Informationen in ihr theoretisches Modell und konnten so vorhersagen, wie die Wachstumsgeschwindigkeit der Bakterien die Proteinkonzentration beeinflusst. Demnach sinkt die Proteinkonzentration mit steigender Wachstumsrate - ein Ergebnis, das gut mit experimentellen Daten zu unregulierten Genen übereinstimmt.

Dass die Aktivität von Genen und genetischen Schaltkreise davon abhängt, wie schnell die Zellen wachsen, erschwert das Vermessen genetischer Schaltkreise erheblich. Denn die verschiedenen Messgrößen, die für die Charakterisierung der Aktivität von Genen benutzt werden, wie z.B. mRNA- und Proteinkonzentrationen, hängen auf unterschiedliche Weise von der Wachstumsrate ab. "Erhöht sich die Konzentration einer bestimmten Boten-RNA (mRNA) um einen Faktor drei im Vergleich zu einer anderen Messung, geht man normalerweise davon aus, dass die Genexpression hochreguliert wurde" erklärt Stefan Klumpp. "Wenn aber die Zellen mit dem höheren mRNA-Level auch schneller wachsen, könnte sich trotzdem die entsprechende Proteinkonzentration verringert haben." Veränderte Proteinkonzentrationen sind darüber hinaus nicht zwangsläufig eine Folge von regulierter Genexpression. Solche Schwankungen können auch auf verlangsamtes oder beschleunigtes Zellwachstum zurückgehen.

Feedback zwischen regulierten Genen und Zellwachstum

Die Untersuchungen zeigen zudem, wie diese Wachstumseffekte mit der Genregulierung zusammenwirken. Zum Beispiel wird die Proteinkonzentration unabhängig vom Größenwachstum, wenn ein Gen durch negative Rückkopplung kontrolliert wird: In diesem Fall wird die Proteinsynthese gestoppt, wenn eine bestimmte Zielkonzentration erreicht wird. Wächst die Zelle weiter, sinkt die Proteinkonzentration zunächst, so dass weiteres Protein bis zur Zielkonzentration gebildet wird. Das Wachstum von Zellen kann aber auch selbst zu Rückkopplungen führen: Dann nämlich, wenn das Zellwachstum von der Konzentration eines bestimmten Proteins abhängt, die wiederum an das Zellwachstum gekoppelt ist. Wirkt beispielsweise die Proteinkonzentration hemmend auf die Wachstumsrate und stellen langsamer wachsende Zellen gleichzeitig mehr von diesem Protein her (positives Feedback), kann ein Teil einer Population genetisch identischer Zellen schneller wachsen als der Rest. Dies beruht allein darauf, dass ein Zellwachstum hemmendes Protein in manchen Zellen etwas häufiger gebildet wird. Dadurch wachsen diese Zellen langsamer, was wiederum die Konzentration des Proteins steigen lässt und das Wachstum weiter verlangsamt.

Die Forscher nehmen an, dass diese Wachstumseffekte in der Natur aktiv genutzt werden, denn für Bakterien sind sie möglicherweise sogar hilfreich. Wenn sie neue Fähigkeiten erwerben, wie z.B. neue Stoffwechselfunktionen oder Toleranz gegenüber Antibiotika, können die neuen Eigenschaften auch ohne direkte Genregulierung allein durch die Wachstumseffekte reguliert werden. Daraus könnte sich dann ein regulativer Schaltkreis entwickeln.

Ansprechpartner:
Dr. Stefan Klumpp
Max Planck Institute of Colloids and Interfaces, Potsdam
Tel: +49 331 567 9620
Fax: +49 331 567 9612
E-Mail: klumpp@mpikg.mpg.de
Katja Schulze, Presse + Öffentlichkeitsarbeit
Max-Planck-Institut für Kolloid- und Grenzflächenforschung
Fon: +49 (331) 567 - 9203
Fax: +49 (331) 567 - 9202
katja.schulze@mpikg.mpg.de

Dr. Harald Rösch | Max-Planck-Institut
Weitere Informationen:
http://www.mpikg.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Form bleiben
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Intelligente Fluoreszenzfarbstoffe
16.08.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schatzkammer Datenbank: Digitalisierte Schwingfestigkeitskennwerte sparen Entwicklungszeit

16.08.2018 | Informationstechnologie

Interaktive Software erleichtert Design komplexer Gussformen

16.08.2018 | Informationstechnologie

Fraunhofer HHI entwickelt Quantenkommunikation für jedermann im EU-Projekt UNIQORN

16.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics