Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zelluläres Wettrüsten gegen DNA-Parasiten: Wie winzige RNAs springende Gene zähmen

17.11.2016

Ein Forscherteam am Institut für Molekulare Biotechnologie (IMBA) der Österreichischen Akademie der Wissenschaften (ÖAW) konnte erstmals aufklären, wie kleine RNA Fragmente in der Zelle zu einem effektiven Sicherheitsystem gegen Genomparasiten generiert werden, wie das Fachjournal Nature in seiner aktuellen Ausgabe berichtet.

Wäre unser Erbgut ein Haus, so wären neben den offiziellen Bewohnern auch jede Menge Hausbesetzer zu Gange. Ein sehr großer Teil—beim Menschen sind es fast 50% des Genoms—wird von egoistischen Genen wie Transposons bevölkert. Diese auch als springende Gene bezeichneten Genomparasiten sind Überbleibsel aus evolutionärer Vorzeit, die eingebettet in unserer DNA ruhen. Meist sind sie inaktiv und harmlos. Doch werden Transposons aktiv, können sie beliebig im Erbgut herumspringen und Mutationen auslösen.


Wird diese Fruchtfliege sich fortpflanzen können oder nicht? Darüber entscheidet ein effektives Sicherheitssystem ihrer Keimzellen, sogenannte piRNAs. Diese winzigen RNA-Fragmente zähmen springende Gene und verhindern so Mutationen, die häufig zu Unfruchtbarkeit führen.

Der springende Punkt ist die Vielfalt
Einerseits sorgen die vielen, über die Zeit gesammelten Gensequenzen ähnlich einer „genetischen Knetmasse“ für Vielfalt in der DNA und treiben evolutionäre Prozesse an. Mittlerweile weiß man, dass manche der „prominenten“ Mutationen durch Transposons verursacht wurden, wie zum Beispiel beim Birkenspanner: Der Schmetterling kam plötzlich in einer dunklen Variante vor, was den Mutanten in Zeiten industriebedingter Luftverschmutzung erfolgreicher machte, denn plötzlich konnte er sich besser an den verrußten Birkenstämmen tarnen. Meist jedoch sind Mutationen, die durch egoistische Gensequenzen ausgelöst werden, schädlich. Besonders gerne springen Transposons in Keimzellen, wo sie besonders nachhaltige Schäden verursachen und Unfruchtbarkeit auslösen können. 

Doch die Keimzelle rüstet gegen die hüpfenden Störenfriede im Erbgut und benutzt kleine RNA-Fragmente, sogenannte piRNAs, um sie lahm zu legen. Diese winzigen RNAs erkennen die egoistischen Passagen im Erbgut, docken daran an und legen diese still. piRNAs funktionieren wie eine Art Immunsystem für das Genom. Da sie selber unterschiedlichste Sequenzen von DNA-Eindringlingen erkennen müssen, sind auch piRNAs besonders vielfältig, was es den Forscher_innen bisher schwer machte, den genauen Entstehungsmechanismus zu entschlüsseln.
 
piRNAs: Wie die Wächter des Genoms gebastelt werden
Bereits vor 10 Jahren konnte IMBA- Gruppenleiter Julius Brennecke und andere nachweisen, dass piRNAs in den Keimzellen der Fruchtfliege diese Schutzfunktion übernehmen. Neueste Erkenntnisse der RNA-Biologie lieferten einem Forscher_innen-Team um die beiden IMBA-Gruppenleiter Stefan Ameres und Julius Brennecke erstmals Erkenntnisse, wie und wo genau piRNAs in der Zelle fabriziert werden.

„Bei der Herstellung von piRNAs müssen beide Enden des Moleküls exakt zugeschnitten werden. Zwar war bekannt, welcher Mechanismus das eine Ende einer solchen Sequenz definiert. Nun konnten wir herausfinden, wie das andere Ende der piRNA  ‚zurechtgestutzt’ wird, und dass dies über zwei verschiedene molekulare Systeme passiert“, freut sich Jakob Schnabl, einer der beiden Erstautoren über die Erkenntnisse seiner Masterarbeit am IMBA, die er zusammen mit dem Postdoktoranden Rippei Hayashi gewinnen konnte.

Drosophila-Genetik, kombiniert mit neuesten Sequenzier-Methoden und Bioinformatik erlaubten wesentliche molekulare Einblicke in das Sicherheitssystem der Zelle.
Stefan Ameres, IMBA-Gruppenleiter, der schon seit Jahren im aufstrebenden Forschungsfeld der RNA-Biologie forscht erklärt: “Wir konnten nachweisen, dass es zwei Wege gibt, um einsatzfähige piRNAs herzustellen. Am Mitochondrium wirkt ein Enzym namens Zucchini und schneidet piRNAs. Aber auch an einem anderen Ort der Zelle, nämlich im Zellplasma, werden die Vorläufer-RNA-Stückchen von einem Protein mit dem passendem Namen Nibbler zurechtgeknabbert. “

Evolution besser verstehen 
„Erstmals konnten wir den Herstellungsmechanismus der piRNAs vollständig klären. Erstaunlich ist, dass die beiden Systeme zur Entstehung oder Biogenese von piRNAs sehr genau aufeinander abgestimmt und in verschiedenen Bereichen der Zelle aktiv sind. Die Tatsache, dass diese zwei Systeme weit verbreitet im Tierreich sind, eröffnet die interessante Frage, warum sich diese Mechanismen parallel ausgebildet haben,“ fasst Julius Brennecke zusammen. „Erkenntnisse der aktuellen Arbeit können auch dabei helfen, evolutionäre Vorgänge auf molekularer Ebene besser zu verstehen und auch in einem neuen Licht zu sehen. Denn das Wetteifern, das wir in der Natur zwischen Parasit und Wirt beobachten können, findet fortwährend auch in unserem Erbgut statt“. 

Originalpublikation:
“'Genetic and mechanistic diversity of piRNA 3'-end formation'”, Rippei Hayashi, Jakob Schnabl, Dominik Handler, Fabio Mohn, Stefan L. Ameres & Julius Brennecke, Nature, November 16, 2016; doi: 10.1038/nature20162

Weitere Informationen:

http://de.imba.oeaw.ac.at/index.php?id=516

Mag. Ines Méhu-Blantar | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?
03.07.2020 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Wirkstoffe aus Kieler Meeresalgen als Mittel gegen Infektionen und Hautkrebs entdeckt
03.07.2020 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Im Focus: Elektronen auf der Überholspur

Solarzellen auf Basis von Perowskitverbindungen könnten bald die Stromgewinnung aus Sonnenlicht noch effizienter und günstiger machen. Bereits heute übersteigt die Labor-Effizienz dieser Perowskit-Solarzellen die der bekannten Silizium-Solarzellen. Ein internationales Team um Stefan Weber vom Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz hat mikroskopische Strukturen in Perowskit-Kristallen gefunden, die den Ladungstransport in der Solarzelle lenken können. Eine geschickte Ausrichtung dieser „Elektronen-Autobahnen“ könnte Perowskit-Solarzellen noch leistungsfähiger machen.

Solarzellen wandeln das Licht der Sonne in elektrischen Strom um. Dabei wird die Energie des Lichts von den Elektronen des Materials im Inneren der Zelle...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

03.07.2020 | Biowissenschaften Chemie

Effizient, günstig und ästhetisch: 
Forscherteam baut Elektroden aus Laubblättern

03.07.2020 | Energie und Elektrotechnik

Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

03.07.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics