Wie zelluläre Prozesse zur komplexen Gehirnfunktion führen

In den letzten Jahrzehnten waren die Neurowissenschaften vor allem auf zwei Gebieten erfolgreich: Erstens konnten sie gänzlich neue Einblicke in die molekularen und zellulären Grundlagen neuronaler Systeme erhalten.

Zweitens, dank funktioneller Bildgebung und anderer moderner Verfahren, konnten sie immer genauer auch die Aktivierungsmuster im lebenden Gehirn darstellen.

Doch wie werden zelluläre Mechanismen in diese höheren Gehirnfunktionen übersetzt? Zur Untersuchung dieser Frage bietet sich die Verarbeitung verhaltensrelevanter Information auf der Ebene spezifischer, gut beschriebener neuronaler Schaltkreise an. Die Wissenslücke zu den Vorgängen zwischen molekular-zellulären und höheren Verarbeitungsebenen soll nun der neu eingerichtete Sonderforschungsbereich (SFB) 870 „Bildung und Funktion neuronaler Schaltkreise in sensorischen Systemen“ schließen. Sprecher des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Projekts ist Professor Benedikt Grothe vom „Munich Center for Neurosciences – Brain and Mind“ (MCN LMU), aus dem heraus die Initiative für den neuen SFB entwickelt und betreut wurde.

Die Neurowissenschaft gilt vielfach bereits als Schlüsseldisziplin der kommenden Jahre. Können hier doch nun – nicht zuletzt dank rasanter technischer Fortschritte – tiefe Einblicke in das Zusammenspiel und die Funktion der Neuronen gewonnen werden. Fragen nach den molekularen und zellulären Grundlagen der Prozesse in unserem Gehirn werden damit immer mehr der wissenschaftlichen Analyse zugänglich. Daneben kann unser Denkorgan „als Ganzes“ jetzt aber auch immer besser bei der Arbeit beobachtet werden: Verfeinerte bildgebende Verfahren zeigen die Aktivierungsmuster im Gehirn: Welche Areale sind bei welcher Tätigkeit aktiv? „Was nun aber noch fehlt, ist die Verbindung dieser Erkenntnisse“, sagt Professor Grothe, der Sprecher des neu eingerichteten SFBs. „Wir wissen noch nicht, wie die Vorgänge in den Zellen und an den Synapsen mit den komplexen Leistungen und den Aktivierungsmustern des Gehirns zusammenhängen. Deshalb müssen wir zunächst verstehen, wie einzelne Schaltkreise funktionieren und wie Information in kleineren und mittleren Neuronenpopulationen repräsentiert wird.“ Eine Lücke, die der neue SFB schließen soll:

Die Forscher erhoffen sich von diesem Projekt ein besseres Verständnis der Informationsverarbeitung in sensorischen Systemen, deren Entwicklung und Plastizität. In einem ersten Schritt sollen dafür neuronale Schaltkreise in sensorischen Systemen verschiedener Modellorganismen untersucht werden. „Diese Schaltkreise verarbeiten spezifische und bekannte Information und bieten eine Reihe von konzeptionellen Vorteilen gegenüber anderen neuronalen Schaltkreisen“, berichtet Grothe. „Zum einen haben sich die sensorischen Schaltkreise über Jahrmillionen an ihre Aufgaben angepasst, also an die Verarbeitung verhaltensrelevanter Stimuli. Deren physikalische Parameter lassen sich vielfach experimentell präzise kontrollieren und manipulieren – und dazu kommt der Vorteil, dass sich gerade sensorische neuronale Schaltkreise oft durch eine klare Beziehung zwischen Struktur und Funktion auszeichnen.“

Die experimentelle Analyse von Schaltkreisfunktionen ist hier besonders gut möglich, weil die sensorische Information in parallelen, anatomisch abgrenzbaren Bahnen vearbeitet wird, die klare und testbare Funktionen haben. So lassen sich auch aktuelle Modelle zur neuronalen Verarbeitung sensorischer Information, die aus der theoretischen Neurobiologie, der „Computational Neuroscience“, kommen, mit Hilfe neuer experimenteller Techniken konkret testen. „Diese wissenschaftliche Interaktion wiederum ist nötig, um von einer deskriptiven Ebene auf die eines echten Verständnisses von Gehirnfunktion zu kommen“, sagt Grothe. Im SFB 870 wird dieser Ansatz einen Schwerpunkt bilden. Eine ganze Reihe weiterer Projekte befasst sich mit neuesten Techniken zur gezielten Manipulation einzelner Neuronengruppen, etwa durch genetische Veränderungen oder durch optische Kontrolle der Aktivität einzelner Neurone oder Neuronengruppen durch lichtgesteuerte Moleküle.

In München und Umgebung arbeiten bereits einige Gruppen, die sich mit unterschiedlichen sensorischen Systemen befassen, etwa dem Hören, Sehen, Riechen und dem Gleichgewichtssinn. Hier kommt seit langem eine ganze Palette konzeptioneller und experimenteller Herangehensweisen zum Einsatz. Damit ist der SFB in einem wissenschaftlichen Umfeld angesiedelt, das schon jetzt für die Erforschung neuronaler Schaltkreise und ihrer Funktionsweise herausragend ist. Neben der LMU als Sprecherhochschule sind die TU München, das Max-Planck-Institut für Neurobiologie und das Helmholtz Zentrum München beteiligt. Der SFB setzt sich aus 23 wissenschaftlichen und einem administrativen Teilprojekt zusammen. Bei einer maximalen Laufzeit von zwölf Jahren wird er zunächst mit rund zehn Millionen Euro für vier Jahre gefördert. (suwe)

Ansprechpartner:
Professor Benedikt Grothe
Biozentrum der LMU München
Tel: +49-89-2180-74300
Fax: +49-89 2180-74304
E-Mail: grothe@lmu.de

Media Contact

Luise Dirscherl idw

Weitere Informationen:

http://www.neuro.bio.lmu.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer