Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zelluläre Müllentsorgung: Innsbrucker Zellbiologen entdecken neuen Protein-Abbau-Weg mit unerwarteter Funktion

12.06.2019

Damit Zellen ihre Funktion erfüllen und gesund bleiben, müssen laufend neue Proteine gebildet sowie alte und fehlerhafte Proteine entfernt werden. Defekte in diesen Prozessen können zu Erkrankungen wie Krebs oder Neurodegeneration führen. Ein Team um den Zellbiologen David Teis vom Biozentrum der Medizin Uni Innsbruck konnte nun einen neuen Protein-Abbau-Weg identifizieren, der zudem auch eine essentielle Funktion im intrazellulären Lipidstoffwechsel erfüllt. Das neue Wissen lässt potentielle Therapie-Ansätze für den gezielten Abbau von Proteinen erwarten.

Zellen müssen ihren intrazellulären Abfall entsorgen und recyclen. Damit wird verhindert, dass sich Proteine ansammeln und Schaden anrichten. Zellen bedienen sich dafür eines ausgeklügelten Müll-Managements, das bestimmte Gruppen von Proteinen in unterschiedliche Proteinabbau Systeme einschleust.


So funktioniert zelluläre Müllentsorgung: Bisher waren nur zwei selektive Abbauwege für Membran-Protein bekannt. Der ‚multivesicular body‘ (MVB) Weg und Endoplasmatisches Retikulum assozierte Degradation (ERAD). Mit Endosome und Golgi assozierter Degradation (EGAD) konnte nun ein dritter Weg für den Abbau von Membran-Proteinen identifiziert und damit das Verständnis für zelluläre Müllentsorgung vervollständigt werden.

(c)MUI/Teis


Die Zellbiologen (v.l.) Oliver Schmidt, David Teis, Michael Widerin und Yannick Weyer.

(c)MUI/Heidegger

Für den gezielten Abbau von Membran-Proteinen waren bisher zwei Entsorgungswege bekannt: ERAD (ER-assoziierte Proteindegradation) und der ‚multivesicular body‘ (MVB) Weg, der vom Proteinkomplex ESCRT (‚endosomal sorting complexes required for transport’) gesteuert wird.

„Sind diese Abbauprozesse aufgrund einer Fehlfunktion gestört, kann das zu schwerwiegenden Erkrankungen von Krebs bis Neurodegeneration führen“, weiß Zellbiologe David Teis, der mit seinem Team an der Sektion für Zellbiologie des Innsbrucker Biozentrum seit vielen Jahren zum Zellstoffwechsel forscht und die Funktion des ESCRT-Komplexes bereits maßgeblich aufklären konnte.

Regieübernahme bei der zellulären Müllentsorgung

Im Rahmen eines FWF-geförderten Projekts und in Zusammenarbeit mit einem internationalen Team von Wissenschafter*innen der ETH Zürich, der Universität Osnabrück und dem Research Institute of Molecular Pathology, IMP, in Wien stellte sich Erstautor Oliver Schmidt aus dem Innsbrucker Biozentrum nun die Frage, ob tatsächlich alle Protein-Abbauwege in Zellen bekannt sind oder nicht.

Mit Bäckerhefe, einem Modellorganismus, in dem diese hoch konservierten Abbau-Wege ebenso zu finden sind wie in humanen Zellen, entdeckte das Team tatsächlich einen neuen Abbau-Weg.

„Durch die Ausschaltung des ESCRT-Systems konnten wir mit genetischen Screens erkennen, dass ein weiterer Mechanismus – EGAD (Endosome und Golgi-assozierte Degradation) – eine zentrale Rolle im Müllmanagement übernimmt“, so Schmidt.

Der EGAD-Prozess benutzt eine molekulare Maschine, die unter anderem Membran-Proteine aufspürt, die verwaist sind und nicht auf den richtigen Organellen sitzen. Sind diese verwaisten Proteine einmal erkannt, sorgt EGAD dafür, dass sie für den Abbau markiert und aus der Membran der Organellen herausgelöst werden. Erst in dieser Form können sie vom Proteasom, einem zellulären Müllzerkleinerer, abgebaut werden.

Überraschende Rolle im zellulären Lipidstoffwechsel

Unter den Proteinen, die über den EGAD-Pfad abgebaut werden, fanden sich auch viele, die im Fettstoffwechsel der Zelle eine Rolle spielen. „Unsere Experimente zeigen, dass zu wenig Sphingolipide produziert werden, wenn der EGAD-Weg nicht funktioniert“, erklärt Teis. Sphingolipide sind spezielle Fettmoleküle und einer der Hauptbestandteile in der Membran tierischer Zellen. Ein Mangel an Sphingolipiden führt zu einer falschen Zusammensetzung der Membranen und damit zu schweren Membran-Defekten.

Die Zellen regeln die Produktion von Sphingolipiden über die Orm-Proteine. „Orm2, ein Substrat des EGAD-Wegs, das wir im Hefe-Modell gefunden haben, kommt auch in humanen Zellen vor und wird mit der Entstehung chronisch entzündlicher Erkrankungen in Verbindung gebracht“, so Schmidt, der sich vor diesem Hintergrund in weiteren Untersuchungen auf den Einfluss des EGAD-Pfades im Rahmen des Fettstoffwechsels fokussieren will.

Der EGAD-Pfad könnte sich als vielversprechende Angriffsfläche für neue therapeutische Ansätze erweisen. „Unsere Ergebnisse dürften für künftige biotechnologische Innovationen, also für die Entwicklung von Medikamenten relevant sein, mit denen Proteine gezielt abgebaut werden sollen. Damit könnte es gelingen, die schädliche Akkumulation von Proteinen zu korrigieren und die Behandlung von damit verbunden Erkrankungen zu ermöglichen“, schließt Teis.

Die Entdeckungen der Innsbrucker Zellbiologen wurden in der renommierten Fachzeitschrift The EMBO Journal publiziert.

Wissenschaftliche Ansprechpartner:

Assoz. Prof. Priv.-Doz. Dr.rer.nat David Teis
Sektion für Zellbiologie
Tel.: +43 512 9003 70191
E-Mail: David.Teis@i-med.ac.at

Originalpublikation:

Endosome and Golgi‐associated degradation (EGAD) of membrane proteins regulates sphingolipid metabolism. Oliver Schmidt et al. The EMBO Journal (2019) e101433
https://doi.org/10.15252/embj.2018101433

Weitere Informationen:

https://www.i-med.ac.at/pr/presse/2019/26.html [Bilder zum Download]

Doris Heidegger | Medizinische Universität Innsbruck
Weitere Informationen:
https://www.i-med.ac.at/mypoint/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick in die dunkle Materie des Genoms
20.11.2019 | Max-Planck-Institut für molekulare Genetik

nachricht Neuer Weg entdeckt, um Killerzellen «umzuprogrammieren»
19.11.2019 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: With artificial intelligence to a better wood product

Empa scientist Mark Schubert and his team are using the many opportunities offered by machine learning for wood technology applications. Together with Swiss Wood Solutions, Schubert develops a digital wood-selection- and processing strategy that uses artificial intelligence.

Wood is a natural material that is lightweight and sustainable, with excellent physical properties, which make it an excellent choice for constructing a wide...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Im Focus: Der direkte Weg zur Phosphorverbindung: Regensburger Chemiker entwickeln Katalysemethode

Wissenschaftler finden effizientere und umweltfreundlichere Methode, um Produkte ohne Zwischenstufen aus weißem Phosphor herzustellen.

Pflanzenschutzmittel, Dünger, Extraktions- oder Schmiermittel – Phosphorverbindungen sind aus vielen Mitteln für den Alltag und die Industrie nicht...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mit alten Buchenwäldern in Europa regionale Entwicklung stärken

20.11.2019 | Agrar- Forstwissenschaften

Zelltod oder Krebswachstum: eine Frage des Zusammenhalts!

20.11.2019 | Medizin Gesundheit

Einblick in die dunkle Materie des Genoms

20.11.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics