Wie Zellmembranen Lipide austauschen

„Kraftwerke der Zelle“, so werden die Mitochondrien oft genannt. Es handelt sich dabei um winzige Zellorganellen mit einem Durchmesser von weniger als einem Mikrometer, die in fast allen Zellen von Menschen, Tieren, Pflanzen und Pilzen enthalten sind.

Sie liefern die Energie, die für die Zellen lebenswichtig ist. Neuerdings ist die Biomedizin auf Indizien gestoßen, die darauf hinweisen, dass Fehlfunktionen der Mitochondrien an manchen Alterserscheinungen und neurodegenerativen Erkrankungen, wie etwa Parkinson, ursächlich beteiligt sind. Bevor aber gesicherte Schlussfolgerungen für die Bekämpfung dieser Krankheiten gezogen werden können, bedarf es weiterer Grundlagenforschung zur Entstehung dieser Zellorganellen. Bisher war beispielsweise unbekannt, wie Zellorganellen wichtige Bausteine ihrer Membranen, die Phosopholipide, untereinander austauschen.

Neue Forschungsergebnisse, die zur Aufklärung dieser Prozesse beitragen, präsentiert jetzt ein Forscherteam unter Beteiligung von Prof. Dr. Benedikt Westermann und Till Klecker an der Universität Bayreuth im Wissenschaftsmagazin „Science“.

Zusammen mit Wissenschaftlern der Universität Köln haben die Bayreuther Zellbiologen untersucht, wie es den Mitochondrien gelingt, Phospholipide herzustellen. Ohne diese fettähnlichen Moleküle könnten die Mitochondrien und auch andere Zellorganellen wesentliche Aufgaben in der Zelle nicht erfüllen.

Im „Huckepack-Verfahren“:

Das Protein Ups1 ermöglicht Importe aus dem Endoplasmatischen Retikulum Jedes Mitochondrion besitzt eine Hülle, die ihm eine längliche Form verleiht und sich aus einer äußeren und einer inneren Membran zusammensetzt. Für das Wachstum dieser Membranen müssen die Phospholipide zwischen den Membranen ausgetauscht und dann weiter umgebaut werden. Dabei gilt: Nicht alle Bausteine, die für die Synthese benötigt werden, können die Mitochondrien aus eigener Kraft herstellen. Sie müssen Vorstufen der Phospholipide aus einem anderen Zellorganell importieren, nämlich aus dem Endoplasmatischen Retikulum (ER). Das ER steht mit den Mitochondrien in einem sehr engen Kontakt. Es war bisher aber unbekannt, wie die Membranbestandteile zwischen dem ER und den mitochondrialen Membranen ausgetauscht werden.

Das Team aus Bayreuther und Kölner Forschern hat herausgefunden, wie Vorstufen der Phospholipide aus dem ER über die äußere bis zur inneren Membran der Mitochondrien gelangen. Sie haben ein Protein identifiziert, das ein als Phosphatidylsäure bezeichnetes Lipid gleichsam im Huckepack-Verfahren transportiert. Dieses Protein, „Ups1“, transportiert die Phosphatidylsäure, die die mitochondriale Außenmembran vom ER aufgenommen hat, weiter bis zur inneren Membran. Wie ein Shuttle wechselt Ups1 zwischen den beiden Membranen der Mitochondrien hin und her.

Der Syntheseprozess:
Enzymatische Störungen und ihre Folgen
Dieser Shuttle liefert den aus dem ER importierten Baustein bei der inneren Membran ab, wo er dann zu weiteren Phospholipiden umgebaut wird. Diese Synthese setzt sich dabei wie eine Kaskade aus mehreren, aufeinander folgenden Teilprozessen zusammen. Jeder Teilprozess wird dabei durch ein spezifisches Enzym in Gang gesetzt. Die Zellbiologen in Bayreuth und Köln haben neue Einsichten in diese Abläufe gewinnen können, indem sie einige der beteiligten Enzyme „ausgeschaltet“, also funktionsuntüchtig gemacht haben. Dadurch geriet der gesamte Syntheseprozess mehrfach ins Stocken – mit der Folge, dass sich an der inneren Membran Zwischenprodukte anhäuften, die nicht mehr weiterverarbeitet werden konnten.

Welche gravierenden Konsequenzen solche künstlichen Eingriffe in die Synthese der Phospholipide haben, wurde im Bayreuther Labor für Elektronenmikroskopie sichtbar. Solange die Enzyme ungestört arbeiten und die Herstellung der Phospholipide vorantreiben, weist die innere Membran der Mitochondrien eine Vielzahl kleiner Einstülpungen aus. Diese sogenannten „Cristae“ vergrößern die Oberfläche der Membran. Sie bieten damit genügend Platz für biochemische Reaktionen, die für die Funktionstüchtigkeit der Mitochondrien und die Energieversorgung der Zelle unentbehrlich sind. Doch wenn die Synthese der Phospholipide gestört wird und Zwischenprodukte nicht mehr weiterverarbeitet werden, ändert sich die Struktur der inneren Membran schlagartig. Die Membran verliert ihre ursprüngliche Form, die optimal der Funktion angepasst ist; zahlreiche Einstülpungen verlängern sich und lösen sich dann ab, weil sich die Lipidzusammensetzung der Membran dramatisch ändert.

Zellbiologische Grundlagenforschung

Diese Strukturänderungen geben erste Antworten auf bisher ungelöste Fragen der zellbiologischen Grundlagenforschung: Was bestimmt die Form der zellulären Membranen, und wie wird die Form der Funktion angepasst? „Es freut uns, wenn wir mit unserem elektronenmikroskopischen Know-How dazu beitragen können, grundlegende Fragen der Zellbiologie zu beantworten“, erklärt Prof. Dr. Benedikt Westermann. „Besonders spannend wird es sein, zukünftig zu sehen, ob diese Prozesse auch beim Altern oder neurodegenerativen Erkrankungen im Menschen eine Rolle spielen.“

Veröffentlichung:
Melanie Connerth, Takashi Tatsuta, Mathias Haag, Till Klecker, Benedikt Westermann, and Thomas Langer,
Intramitochondrial Transport of Phosphatidic Acid in Yeast by a Lipid Transfer Protein,
in: Science 2012, Vol. 338 no. 6108 pp. 815-818
DOI (Link): 10.1126/science.1225625
Ansprechpartner:
Prof. Dr. Benedikt Westermann
Zellbiologie und Elektronenmikroskopie
Universität Bayreuth
D-954470 Bayreuth
Tel.: +49 (0)921 55 4300
E-Mail: benedikt.westermann@uni-bayreuth.de
Text und Redaktion:
Christian Wißler M.A. mit Prof. Dr. Benedikt Westermann
Stabsstelle Presse, Marketing und Kommunikation Universität Bayreuth
D-95440 Bayreuth
Tel.: 0921 / 55-5356 / Fax: 0921 / 55-5325
E-Mail: mediendienst-forschung@uni-bayreuth.de

Media Contact

Christian Wißler Universität Bayreuth

Weitere Informationen:

http://www.uni-bayreuth.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer