Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellkern-Architektur entsteht beim Erwachen des Genoms

07.04.2017

Max-Planck Wissenschaftler enträtseln wann in der Entwicklung die 3D-Organisation des Genoms im Zellkern entsteht. Ihre Ergebnisse, publiziert in Cell, zeigen, dass das Genom seine richtige Form annimmt wenn die Transkription zum ersten Mal in der Zygote angeschaltet wird. Transkription per se ist für diesen Prozess aber nicht nötig.

Wenn man die DNA-Moleküle einer einzelnen Zelle unseres Körpers an einander legen würde, bekäme man einen Faden von ungefähr 2 Metern. Erstaunlicherweise sind Zellen jedoch in der Lage, dieses genetische Material in ihren Zellkern von nur einigen Mikrometern zu falten und kompaktieren.


Embryos der Fruchtfliege in verschiedenen Kernstadien

Vaquerizas Lab / Clemens Hug und Alexis Grimaldi


Chromatin-Karten der verschiedenen Entwicklungsstadien

Vaquerizas Lab / Clemens Hug

Die Anordnung und Kompaktierung des Genoms im Zellkern muss dabei aber so geschehen, dass Zellen dennoch einen vernünftigen Zugang zur genetischen Information haben, um zum Beispiel Botschafter-RNA für bestimmte Proteine zu produzieren oder um das genetische Material vor der Zellteilung zu kopieren. Wenn Mutation auftreten, die die räumliche Organisation des Genoms durcheinander bringen, können Krankheiten wie Krebs entstehen.

Wissenschaftler sind schon lange daran interessiert, die räumliche Organisation des Genoms im Zellkern zu untersuchen und verwenden meistens mikroskopische Techniken. Neueste Fortschritte in genomischen Techniken, mit denen man die 3D-Organisation des Genoms untersuchen kann, haben zu einer höheren Auflösung geführt.

Allerdings ist immer noch unklar, wann in der Entwicklung das Genom seine 3D-Organisation erlangt. Jetzt haben Wissenschaftler der Forschungsgruppe ‚Regulatory Genomics’ am Max-Planck-Institut für molekulare Biomedizin in Münster mithilfe genomischer Techniken und junger Embryos von Fruchtfliegen zeigen können, dass die 3D-Organisation des Genoms entsteht, wenn der frühe Embryo sein eigenes genetisches Programm einschaltet (Cell 169, 216-228, 06. April 2017).

Ein geläufiges Bild des genetischen Materials einer Zelle ist das von stabförmigen Strukturen der mitotischen Chromosomen. Diese liegen jedoch nur vor, wenn Zellen sich teilen. Die restliche Zeit befindet sich das genetische Material ausgebreitet im Zellkern in Form von Chromatin-Fasern – DNA-Moleküle die dicht um Histon-Proteine gewickelt sind – welche hingegen nicht so dicht komprimiert sind wie mitotische Chromosomen.

„Man könnte das genetische Material als einen Teller Spaghetti betrachten, auf dem jede einzelne Pasta ein DNA-Molekül in jedem Chromosom darstellt“, sagt Juanma Vaquerizas, Leiter der Studie und Max Planck Forschungsgruppenleiter der Gruppe ‚Regulatory Genomcs’ am Max-Planck-Institut für molekulare Biomedizin. „Eine grundlegende Frage in der Wissenschaft war ob die einzelnen Spaghetti sich willkürlich mit anderen vermischen oder ob sie einen definierten Platz auf dem Teller einnehmen.“

Mittels mikroskopischer Methoden hatten Wissenschaftler zuvor herausgefunden, dass das Chromatin im Zellkern nicht zufällig positioniert ist und neuere Methoden, mit denen die Chromatin-Architektur gemessen werden kann, haben feinere Strukturen – sogenannte TADs (‚topologically associated domains’) – aufgedeckt, die basale funktionale Einheiten bilden, die die 3D-Organisation des Genoms bestimmen.

Allerdings blieb es rätselhaft warum diese TAD-Organisation bei verschiedenen Zelltypen eines Organismus oder in konservierten DNA-Regionen zwischen Tierarten sehr ähnlich ist, obwohl in unterschiedlichen Zelltypen verschiedene Teile des Genoms aktiviert werden. Dies veranlasste Clemens Hug und Juanma Vaquerizas dazu, zu untersuchen wann während der Entwicklung die Chromatin-Architektur etabliert wird.

Das Forscherteam entschied sich für die frühe Entwicklung von Fruchtfliegen als Modell für ihre Experimente. „Eine erstaunliche Eigenschaft von der Fruchtfliegenentwicklung ist, dass nach der Befruchtung sich die Kerne dreizehn Mal alle 10-15 Minuten synchron teilen, ohne dass es eine Genaktivierung gibt“, sagt Vaquerizas.

Die Eizelle enthält alle mRNA-Moleküle und Proteine, die für die Differenzierung und Entwicklung während der ersten Kernteilungen nötig sind. Dann, bei Kernteilung 14 – nur 2,5 Stunden nach der Befruchtung – wird das embryonale Genom aktiviert. „In Fruchtfliegen können wir also die frühe Chromatin-Organisation sehr genau und mit einer hohen zeitlichen Auflösung untersuchen“, sagt Vaquerizas.

Die Entscheidung für die Fruchtfliege mit ihrer besonderen zeitlich verlaufenden Entwicklung erwies sich als erfolgsentscheidend für das Experiment, weil die Wissenschaftler so die 3D-Genomorganisation in Kernen untersuchen konnten, in denen noch keine Transkription stattfindet. So konnten sie die Genomorganisation von Effekten der Transkription entkoppeln.

Durch die Verwendung von hochmodernen genomischen Analysen konnten die Wissenschaftler die Chromatin-Organisation mit einer sehr hohen räumlichen Auflösung untersuchen. Clemens Hug, Doktorand und Erstautor der Studie, erklärt die Methode: „Die sogenannte in situ Hi-C Methode ermöglicht es uns, jene Abschnitte der DNA, die im dreidimensionalen Raum des Kerns mit einander interagieren, mit hoher Präzision zu identifizieren und den Grad deren Interaktionen im gesamten Genom zu bestimmen.

Wir können also die 3D-Organisation des Chromatins an einem bestimmten Zeitpunkt erfassen und Änderungen in der Organisation über verschiedene Entwicklungsstadien enthüllen.“ Erstaunlicherweise fand das Team heraus, dass das Genom in frühen Entwicklungsstadien keine festgelegte Chromatin-Organisation aufweist und dass sich eine geordnete 3D-Architektur erst in späteren Stadien zunehmend entwickelt.

„Wir konnten beobachten, dass TAD-Grenzen – die bestimmte, funktionelle Chromatin-Einheiten definieren – entstehen, wenn die ersten zygotischen Genen abgelesen werden. Die Anzahl der TAD-Grenzen erreicht ein Maximum, wenn das komplette zygotische Genom aktiviert wurde“, sagt Hug. „Diese Grenzen sind von Haushaltsgenen besetzt, die kontinuierlich in allen Zelltypen abgelesen werden. Sobald sie etabliert sind, werden die Grenzen während der gesamten Entwicklung beibehalten.”

Dies ist eine wichtige Erkenntnis, denn es liefert eine Erklärung für die Frage, warum die TAD-Organisation von Genomen bei verschiedenen Zelltypen und bei evolutionär konservierten Regionen bei verschiedenen Tierarten ähnlich ist.

Darüber hinaus konnten die Wissenschaftler zeigen, dass die TAD-Grenzen unabhängig von der Transkription etabliert werden, obwohl die Etablierung der TAD-Grenzen mit aktiven DNA-Regionen verbunden ist. „Das ist interessant, denn es impliziert dass die Transkriptions-Maschinerie oder -Mechanismen bei der Etablierung von TAD-Grenzen eine Rolle spielt“, sagt Hug.

Die Wissenschaftler haben gesehen, dass Zelda, einer der ersten Transkriptionsfaktoren, die das Chromatin für die Transkriptions-Maschinerie öffnet, notwendig ist, um manche TAD-Grenzen zu etablieren. „Wir denken daher, dass Zelda und vielleicht auch andere Proteine mit einer ähnlichen Funktion, zusammen mit RNA Pol II, die TAD-Grenzen erstellen und somit für die 3D-Chromatin-Architektur verantwortlich sind“, sagt Hug.

Wenn die Proteine, die die TAD-Grenzen festlegen – und somit entscheidend für die Chromatin-Architektur verantwortlich sind – in ihrer Funktion gestört sind, kann dies zu bestimmten Entwicklungserkrankungen und Krebs führen“, sagt Vaquerizas. „Unsere neuen Erkenntnisse zu der Art wie die 3D-Chromatin-Architektur etabliert und aufrecht erhalten wird, wird daher für weitere Studien zur Auswirkung von Genexpression in der Entwicklung und bei Krankheiten von großer Bedeutung sein.“

Originalveröffentlichung:
Clemens B. Hug, Alexis G. Grimaldi, Kai Kruse and Juan M. Vaquerizas. Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell 169: 216-228, April 6th, 2017 DOI: 10.1016/j.cell.2017.03.024

Kontakt:
Dr. Juan M. Vaquerizas, Max-Planck Gruppenleiter
Tel: +49 251 70365–580
E-Mail: jmv@mpi-muenster.mpg.de

Dr. Jeanine Müller-Keuker, PR-Referentin
Tel: +49 251 70365–325
E-Mail: presse@mpi-muenster.mpg.de

Dr. Harald Rösch | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics