Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellen auf Wanderschaft: Falten in der Zellmembran liefern Material für nötige Auswölbungen

23.11.2017

Um sich zu fortzubewegen, bilden manche Zellen Auswölbungen in Form von Bläschen. Aber wie entstehen diese? Münstersche Wissenschaftler des Exzellenzclusters „Cells in Motion“ haben herausgefunden, dass Falten in der Zellmembran eine entscheidende Rolle spielen. Die Studie ist in „Developmental Cell“ erschienen.

Entwickelt sich ein Organismus, wandern Millionen von Zellen von Ort zu Ort, um an den richtigen Stellen Gewebe und Organe zu bilden. Um sich fortbewegen zu können, bilden manche Zellen Auswölbungen in Form von Bläschen, die in die Richtung zeigen, in die sie wandern. Wie ein Luftballon sehen diese Auswölbungen aus – anders als das Gummi eines Luftballons kann sich die äußere Schicht einer Zelle, die Zellmembran, allerdings nicht weit ausdehnen, ohne zu platzen.


Urkeimzelle eines 18 Stunden alten Zebrafisch-Embryos. Rechts: Um sich fortzubewegen, bildet die Zelle eine Auswölbung in Form einer Blase in Wanderungsrichtung aus.

Foto: M. Goudarzi et al./Dev. Cell


Li.: Die Zellmembran (grün) weist Falten auf. Mi.: Bildet sich eine Blase, falten sie sich auseinander. Re.: Bildet sich die Blase zurück, stülpen sie sich wieder ein. (rot = Aktin, grau = Zellkern)

Grafik: Dev. Cell/N. Knubel

Wie entstehen dann die Auswölbungen?

Wissenschaftler des Exzellenzclusters „Cells in Motion“ der Universität Münster haben die Wanderung von sogenannten Urkeimzellen in Zebrafisch-Embryos untersucht und herausgefunden, dass Zellen bestimmte Falten in ihrer Zellmembran nutzen, um aus ihnen Bläschen zu bilden. Diese Falten sind normalerweise ins Zellinnere gestülpt und breiten sich dann nach außen hin auseinander.

„Wir konnten zum ersten Mal zeigen, dass diese Strukturen bei der Bläschenbildung die entscheidende Rolle spielen“, sagt Zellbiologe Prof. Dr. Erez Raz, Gruppenleiter am Exzellenzcluster „Cells in Motion“. Dieses Wissen kann auch bei der Erforschung anderer Zellarten, zum Beispiel bestimmter Krebszellen, die sich ähnlich fortbewegen, hilfreich sein. Die Studie ist aktuell in der Fachzeitschrift „Developmental Cell“ erschienen.

Die Geschichte im Detail:

Verschiedene Zelltypen bewegen sich auf unterschiedliche Arten fort. Manche Zellen bilden Auswölbungen in Form von Blasen in Wanderungsrichtung aus, mit denen sie vorwärtskommen. Diese Blasen entstehen, wenn Druck im Inneren der Zelle die Zellmembran nach außen schiebt. In ihrer Studie untersuchten die Wissenschaftler diese Zellverformung bei Urkeimzellen in sich entwickelnden Zebrafisch-Embryos.

Urkeimzellen wandern im Embryo vom Ort ihrer Entstehung zu den Geschlechtsorganen, wo sie dann zu Spermien und Eizellen werden. Innerhalb weniger Sekunden können sich Urkeimzellen umformen und Bläschen bilden. „Wir wollten herausfinden, wie sich die Zellen derart schnell verformen können und woher das benötigte ,Material‘ kommt, mit dem sie ihre Auswölbungen bilden“, sagt Zellbiologe Mohammad Goudarzi, Erstautor der Studie.

Die Wissenschaftler nahmen die Zellmembran ins Visier und identifizierten Falten, die ins Zellinnere gestülpt sind. Zum ersten Mal erforschten sie im lebenden Organismus, welche Rolle diese Falten spielen und wie sie sich dynamisch verhalten. Zunächst markierten die Wissenschaftler die Zellmembran mit einem fluoreszierenden Farbstoff, um sie unter dem Mikroskop zu beobachten. Das Ergebnis: Bevor die Zelle eine Blase bildete, waren in der Membran deutlich Falten zu erkennen. Hatte sich jedoch eine Blase gebildet, waren gleichzeitig keine Falten mehr zu sehen – was die Forscher vermuten ließ, dass die Falten an der Bläschenbildung beteiligt sind und sich auseinanderbreiten können.

Um die Dynamik dahinter zu untersuchen, markierten die Wissenschaftler die Membranfalten zusätzlich mit bestimmten Proteinen, welche bevorzugt an gekrümmte Membranen binden. Die Forscher beobachteten, dass diese Marker-Proteine sich an der Stelle der Zelle anreicherten, die in Wanderungsrichtung ausgerichtet ist. Dort bildeten sich wenig später auch die Blasen.

Darüber hinaus entdeckten die Wissenschaftler, dass ein Bestandteil des Zellskeletts, das Protein Aktin, ebenfalls an den Stellen auftrat, wo sich Falten entwickelten. Dieses Protein ist unter anderem dafür verantwortlich, dass die Zelle ihre Struktur situationsabhängig anpassen kann. Wie viel Aktin wann und wo vorkommt, reguliert dabei das Protein Cdc42. Um die Rolle dieses Proteins auch in Zusammenhang mit dem Verhalten der Falten in der Zellmembran zu untersuchen, hemmten die Forscher Cdc42.

Mithilfe eines Konfokalmikroskops konnten sie im lebenden Organismus beobachten: War weniger Cdc42 vorhanden, bildeten sich auch weniger Falten. Das führte dazu, dass sich weniger Blasen bildeten, die Beweglichkeit der Zellen eingeschränkt wurde und sie dadurch nicht mehr ihr Ziel erreichten. „So konnten wir zeigen, dass die Bildung von Falten in der Zellmembran durch Cdc42 reguliert wird und dass eine Zelle diese Falten benötigt, um Blasen zu bilden und sich fortbewegen zu können“, sagt Mohammad Goudarzi.

„Unsere neuen Erkenntnisse darüber, wie sich Zellen fortbewegen, können von generellem Interesse sein – sowohl im Kontext von physiologischen Prozessen als auch bei Krankheiten“, sagt Erez Raz. Denn nicht nur Urkeimzellen, sondern auch andere Zelltypen bilden Blasen, wenn sie wandern – so zum Beispiel bestimmte Krebszellen, wenn sie in gesundes Gewebe eindringen. Auch bei der Zellteilung oder wenn Zellen absterben, kommt es an der Zelloberfläche zu Auswölbungen. Zukünftig könnten die neu gewonnenen Erkenntnisse auch in anderen Zellen und Organismen überprüft werden, um sie möglicherweise für spätere medizinische Anwendungen relevant zu machen.

Die Studie erhielt finanzielle Unterstützung durch den Exzellenzcluster „Cells in Motion“ der Universität Münster, das Interdisziplinäre Zentrum für Klinische Forschung (IZKF) der Universität Münster, die Deutsche Forschungsgemeinschaft und den Europäischen Forschungsrat.

Autorin:

Svenja Ronge
Pressereferentin/Forschungsredakteurin im Exzellenzcluster "Cells in Motion"
Tel.: +49 251 83-49310
svenja.ronge@uni-muenster.de

Originalpublikation:

Goudarzi M, Tarbashevich K, Mildner K, Begemann I, Garcia J, Paksa A, M Reichman-Fried M, Mahabaleshwar H, Blaser H, Hartwig J, Zeuschner D, Galic M, Bagnat M, Betz T, Raz E. Bleb expansion in migrating cells depends on supply of membrane from cell surface invaginations. Dev Cell 2017, DOI 10.1016/j.devcel.2017.10.030

Weitere Informationen:

https://www.uni-muenster.de/Cells-in-Motion/de/people/all/raz-e.php Prof. Erez Raz/Exzellenzcluster „Cells in Motion“
http://www.cell.com/developmental-cell/fulltext/S1534-5807(17)30874-2 Abstract der Originalpublikation

Svenja Ronge | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Blasen Cells Urkeimzellen Wanderschaft Zellbiologe Zelle Zellmembran protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mister Raney bekommt Konkurrenz - Ein neuer Katalysator auf Nickel-Basis nutzt Nano-Strukturen
16.07.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

nachricht Duftrezeptoren können viel mehr als nur riechen
16.07.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mister Raney bekommt Konkurrenz - Ein neuer Katalysator auf Nickel-Basis nutzt Nano-Strukturen

16.07.2018 | Biowissenschaften Chemie

Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

16.07.2018 | Physik Astronomie

Rostocker Forscher testen neue Generation von Offshore-Windenergie-Anlagen

16.07.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics