Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zeitraffer-Mikroskopie zeigt wie Gewebe ihre Gestalt annehmen

05.11.2018

Veröffentlichung in Nature Communications: Biologen der TU Dresden entschlüsseln Mechanismen der Gewebeentwicklung bei der Taufliege Drosophila

Während der Embryonalentwicklung von Mensch und Tier verändern Gewebe ihre Gestalt, um ihre charakteristische, funktionale Form anzunehmen und um Organe auszubilden. Die darin zugrundeliegenden Mechanismen zählen bislang noch zu den großen Geheimnissen des Lebens, deren Ergründung sich Forscher auf der ganzen Welt widmen.


Mechanische Kräfte führen zur Faltenbildung von Geweben. Das Bild zeigt ein Flügelscheibenepithel der Taufliege, in dem mehrere Falten ausgebildet sind.

Dr. Liyuan Sui

Einem interdisziplinären Forscherteam um den Biologen Prof. Christian Dahmann von der TU Dresden ist es in einer neuen Studie gelungen, zwei der zellulären Mechanismen zur Gestaltbildung von Geweben zu entschlüsseln. Die Studie wird am 5. November 2018 im Online-Fachjournal Nature Communications veröffentlicht.

Eine in der Embryonalentwicklung häufig vorkommende Gestaltänderung betrifft die sogenannten Epithelgewebe. Diese Gewebe falten sich oder bilden Röhren aus, Vorgänge die zum Beispiel bei der Ausbildung des Gehirns oder der Entwicklung des Darms bedeutend sind.

Die Gestaltänderung von Epithelgeweben beruht auf der Änderung der Form oder der Anordnung von Zellen innerhalb des Gewebes. Es ist bekannt, dass die Formveränderungen von Zellen auf der Ausbildung von mechanischen Kräften beruht. Allerdings weiß man nur wenig darüber, wie Zellen mechanische Kräfte generieren und wo in der Zelle diese Kräfte wirken.

Das Team um Prof. Dahmann analysierte die Faltung von Epithelgeweben in der Taufliege Drosophila, einem bedeutenden Modellorganismus der Entwicklungsbiologie. Der Flügel der Taufliege bildet sich aus einem einfachen Gewebe, dem Flügelscheibenepithel, aus.

Dieses Gewebe ist zunächst flach und eben, faltet sich dann aber während der Entwicklung entlang von bestimmten Linien. Das Forscherteam hat eine Methode entwickelt, um die Faltenbildung des Flügelscheibenepithels durch Zeitraffer-Mikroskopie zu verfolgen.

Die gewonnenen Bilddaten wurden genutzt, um die Dimensionen einzelner Zellen, die Teil der Falte waren, über die Zeit hinweg zu bestimmen. Dabei konnte man erkennen, dass sich die Zellen auf der nach unten gerichteten (sogenannten basalen Oberfläche) des Gewebes ausdehnten.

Wie war diese Ausdehnung möglich? Um dieser Frage nachzugehen, maßen die Wissenschaftler die mechanischen Kräfte, die auf diese Zellen einwirkten. Dazu durchtrennten die Biologen einzelne Verbindungen zwischen Zellen mit Laserlicht und bestimmten die Geschwindigkeit mit der benachbarte Zellen auseinanderwichen.

Dabei wurde deutlich, dass Zellen, die ihre basale Oberfläche ausdehnten, dort eine verringerte mechanische Spannung aufwiesen. Die Forscher erkannten erstmals, dass die verringerte basale mechanische Spannung durch einen teilweisen Abbau der Basallamina, einer extrazellulären Proteinschicht, auf der die Zellen ‚sitzen’, verursacht wurde. Dieser Prozess treibt die Faltenbildung an. Mithilfe von Computersimulation konnte dieses neue Modell gestützt werden.

„Unsere Arbeiten lege nahe, dass der Basallamina von Epithelien eine bedeutende Funktion bei der Ausbildung oder Aufrechterhaltung mechanischer Spannung von Zellen zukommt und, dass Änderungen der Basallamina wesentlich zur Gestaltänderung von Epithelien beitragen können“, kommentiert Prof. Dahmann.

„Wie die Basallamina mechanische Kräfte aufbaut und wie die Basallamina spezifisch unter den Zellen, die die Falte bilden, verringert wird, sind Fragen, die in Zukunft beantwortet werden müssen.“

Die Untersuchung der Zellen bei der Ausbildung einer zweiten Falte innerhalb des Flügelscheibenepithels ergab ebenfalls Erstaunliches: Zwar weiteten sich die Zellen auch dabei basal, allerdings blieben die Kräfte, die auf die basale Oberfläche der Zellen wirkten, unverändert.

Die aktuellen Messungen ergaben, dass bei diesen Zellen die Spannung entlang der seitlichen Oberfläche zwischen benachbarten Zellen erhöht war. Diese erhöhte seitliche mechanische Spannung wurde durch die Anreicherung des molekularen Motorproteins Myosin erreicht. Sie führte dazu, dass Zellen sich entlang ihrer apikal-basalen Achse verkürzten, was wiederum zur Faltenbildung führte.

Wie es zu der Anreicherung von Myosin kommt und ob man die Studie zur Gestaltbildung von Gewebe auf Wirbeltiere übertragen kann, wollen die Forscher in den kommenden Jahren klären.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Christian Dahmann
Professur für Systembiologie und Genetik
Tel.: +49 351 463-39537
E-Mail: christian.dahmann@tu-dresden.de

Originalpublikation:

Liyuan Sui, Silvanus Alt, Martin Weigert, Natalie Dye, Suzanne Eaton, Florian Jug, Eugene W. Myers, Frank Jülicher, Guillaume Salbreux und Christian Dahmann. “Differential lateral and basal tension drive folding of Drosophila wing discs through two distinct mechanisms”.

Weitere Informationen:

http://dx.doi.org/10.1038/s41467-018-06497-3

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-dresden.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Versteckte Dynamik in neuronalen Netzwerken entdeckt
16.07.2019 | Forschungszentrum Jülich

nachricht Internationales Forschungsteam entwickelt Programm zur Vorhersage neuer Wirkstoffe
16.07.2019 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryozyten als „Türsteher“ und Regulatoren der Zellmigration im Knochenmark

In einer neuen Studie zeigen Wissenschaftler der Universität Würzburg und des Universitätsklinikums Würzburg, dass Megakaryozyten als eine Art „Türsteher“ auftreten und so die Eigenschaften von Knochenmarksnischen und die Dynamik der Zellmigration verändern. Die Studie wurde im Juli im Journal „Haematologica“ veröffentlicht.

Die Hämatopoese ist der Prozess der Bildung von Blutzellen, der überwiegend im Knochenmark auftritt. Das Knochenmark produziert alle Arten von Blutkörperchen:...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet

Supraleitende Hochfrequenzkavitäten können Elektronenpakete in modernen Synchrotronquellen und Freien Elektronenlasern mit extrem hoher Energie ausstatten. Zurzeit bestehen sie aus reinem Niob. Eine internationale Kooperation hat nun untersucht, welche Vorteile eine Beschichtung mit Niob-Zinn im Vergleich zu reinem Niob bietet.

Zurzeit ist Niob das Material der Wahl, um supraleitende Hochfrequenzkavitäten zu bauen. So werden sie für Projekte wie bERLinPro und BESSY-VSR eingesetzt,...

Im Focus: Künstliche Intelligenz löst Rätsel der Physik der Kondensierten Materie: Was ist die perfekte Quantentheorie?

Für einige Phänomene der Quanten-Vielteilchenphysik gibt es mehrere Theorien. Doch welche Theorie beschreibt ein quantenphysikalisches Phänomen am besten? Ein Team von Forschern der Technischen Universität München (TUM) und der amerikanischen Harvard University nutzt nun erfolgreich künstliche neuronale Netzwerke für die Bildanalyse von Quantensystemen.

Hund oder Katze? Die Unterscheidung ist ein Paradebeispiel für maschinelles Lernen: Künstliche neuronale Netzwerke können darauf trainiert werden Bilder zu...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auswandern auf Terra-2?

15.07.2019 | Veranstaltungen

Hallo Herz! Wie kommuniziert welches Organ mit dem Herzen?

12.07.2019 | Veranstaltungen

Schwarze Löcher und unser Navi im Kopf: Wissenschaftsshow im Telekom Dome in Bonn

11.07.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Versteckte Dynamik in neuronalen Netzwerken entdeckt

16.07.2019 | Biowissenschaften Chemie

Fraunhofer: What’s next?

16.07.2019 | Messenachrichten

GFOS auf der Zukunft Personal Europe: Workforce Management weitergedacht

16.07.2019 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics