Zebrafische können ihr Herz flexibel reparieren

Schnitt durch ein Zebrafischherz mit zwei unterschiedlichen Muskelzellschichten (gelb und rot). Die regenerierenden Zellen des gelben Bereichs können auch zum Wiederaufbau der roten Schicht beitragen © Institut für Anatomie, Universität Bern

Der Zebrafisch hat die erstaunliche Kapazität, sein Herz sogar nach schwerwiegenden Schäden wieder zu regenerieren. Dabei teilen sich Herzmuskelzellen, um das verlorene Gewebe zu ersetzen. Da dieser Prozess im menschlichen Herz nicht vorhanden ist, sind Forschende auf der Suche nach den Mechanismen, die beim Zebrafisch dafür verantwortlich sind. Ob alle Herzmuskelzellen in gleichem Masse zur Reparatur des Zebrafischherzens beitragen und ob verschiedene Vorläuferzellen für verschiedene Herzsegmente vorhanden sind, ist derzeit unbekannt.

Ein Team um Dr. Nadia Mercader am Institut für Anatomie der Universität Bern konnte nun in enger Zusammenarbeit mit Mitarbeitern am Forschungsinstitut CNIC in Madrid (Spanien) und der Gruppe von Dr. Christian Mosimann an der Universität Zürich zeigen, dass Herzmuskelzellen des Zebrafisches höchst flexibel sind.

Die regenerierenden Herzmuskelzellen können sich im ausgewachsenen Herzen anpassen, um den Zellen in den verschiedenen Regionen der vormals defekten Herzwand zu ähneln. Doch können im Zebrafisch Herzmuskelzellen aus allen Teilen des Herzens bei der Reparatur helfen? Um dies zu beantworten, schaute sich das Team auch die Frühentwicklung des Herzens an.

Zellen sind von Anfang an flexibel

Das Herz ist das erste Organ, das im entstehenden Embryo seine Funktion ausübt. Bei der Herzentwicklung bildet sich zuerst ein Herzschlauch, der sogleich anfängt, Blut zu pumpen, um den Organismus mit Sauerstoff zu versorgen. Gleichzeitig muss das Herz jedoch auch noch weiterwachsen. Dies wird ermöglicht durch den fortlaufenden Anbau von neuen Vorläuferzellen an den Enden des anfänglichen Herzschlauchs.

Während die Zellen des Herzschlauches im ausgewachsenen Herzen mehrheitlich die linke Herzkammer bilden, tragen die Zellen, die später hinzukommen, vor allem zur Bildung der rechten Herzkammer und der Vorhöfe bei.

Die Studie des Teams um Dr. Mercader zeigt nun, dass bereits bei der frühen Herzentwicklung ein hoher Grad an Plastizität vorhanden ist: wenn Muskelzellen des anfänglichen Herzschlauches zerstört werden, übernehmen die später hinzukommenden Zellen die ursprüngliche Funktion, trotz ihrer eigentlich anderen anfänglichen Aufgabenstellung.

«Diese Ergebnisse sind interessant, da unerwartet», sagt Nadia Mercader. «Sie lassen vermuten, dass ein Herz auf verschiedene Weisen wieder neu aufgebaut werden kann – wahrscheinlich nicht nach einem fixen Plan.» Ein besseres Verständnis davon, was diese Flexibilität im Zebrafischherz ermöglicht, könnte laut den Forschenden von grosser Bedeutung sein, um denselben Reparatur-Prozess auch im menschlichen Herzen anzuregen.

Die Studie wurde im Fachjournal «Nature Communications» veröffentlicht.

Bibliographische Angaben:
Sanchez-Iranzo, H., Galardi-Castilla, M., Minguillon, C., Sanz-Morejon, A., Gonzalez-Rosa, J.M., Felker, A., Ernst, A., Guzman-Martinez, G., Mosimann, C., Mercader, N., 30.01.2018: Tbx5a lineage tracing shows cardiomyocyte plasticity during zebrafish heart regeneration. Nat Commun 9:428, 1-13, doi: doi:10.1038/s41467-017-02650-6

Kontakt:
Dr. Nadia Mercader
Institut für Anatomie, Universität Bern
+41 31 631 84 77 / nadia.mercader@ana.unibe.ch

http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2018/medie…

Media Contact

Nathalie Matter Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer