X-Chromosomen – Öffnen von Haarnadelstruktur erhöht die Dosis

Deshalb müssen ihre X-Chromosomen doppelt so aktiv sein, um dieselbe Proteinmenge zu erzielen. LMU-Wissenschaftler beschreiben nun einen neuen Schalter, der die Verdoppelung der Leistung der in Gang setzt.

Bei der Taufliege Drosophila sind – wie auch beim Menschen – die Geschlechtschromosomen ungleich verteilt: Die Weibchen verfügen über zwei X-Chromosomen, die Männchen besitzen nur ein X- und ein sehr viel kleineres Y-Chromosom. Auf dem Y-Chromosom liegen nur wenige Gene, ganz im Gegensatz zum X-Chromosom: Hier befinden sich zahlreiche Gene, in denen die Baupläne für Proteine festgelegt sind.

Daher müssen diese Gene trotz der schlechteren Ausgangslage bei den Männchen in beiden Geschlechtern gleichermaßen zur Ausprägung kommen – anderenfalls sind die Männchen nicht lebensfähig.

Die Männchen kompensieren ihren Mangel, indem dank der sogenannten Dosis-Kompensation die Aktivität aller Gene auf ihrem X-Chromosom verdoppelt wird. Für die Erkennung des X Chromosoms und die Aktivierung der dort befindlichen Gene ist der Dosis-Kompensationskomplex (DCC) verantwortlich: Eine komplizierte molekulare Maschinerie, in der neben sogenannten MSL-Proteinen auch lange RNA Moleküle (roX) vorliegen. „Für das Funktionieren des DCC ist der korrekte Einbau der roX-RNAs essentiell. Wie dies genau geschieht, war bisher allerdings noch ungeklärt“, sagt der LMU-Biologe Professor Peter Becker, der mit seinem Team untersucht, wie die Enzymmaschinerie des DCC reguliert wird.

Schalter mit bindender Wirkung

Einen ersten wichtigen Schritt haben die Wissenschaftler nun geschafft, indem sie zeigen konnten, dass die roX-RNAs ihre Struktur ändern müssen, bevor ein funktionierender DCC zustande kommt. Die RNAs beinhalten eine charakteristische sogenannte Haarnadelstruktur, die in verschiedenen Fliegenspezies übereinstimmt. „Wir waren schon lange der Ansicht, dass eine so weit verbreitete Struktur eine funktionelle Bedeutung haben sollte. Bisher scheiterten allerdings alle Versuche, eine spezifische Bindung der MSL-Proteinkomponenten des DCC an diese Haarnadelstruktur nachzuweisen“, erklärt Becker.

Dieses Geheimnis hat sich nun aufgeklärt: Die Wissenschaftler konnten zeigen, dass die Bindung nicht direkt an die Haarnadelstruktur erfolgt. Stattdessen muss die Struktur zuerst durch ein bestimmtes Enzym entwunden werden, bevor die MSL Proteine binden können und ein funktionsfähiger DCC entsteht. Die Haarnadelstruktur stellt somit gewissermaßen die „Aus“-Stellung eines Schalters dar, der erst durch ihre Auflösung aktiv wird. „Wir vermuten, dass dieser Schalter nur unter Bedingungen betätigt wird, wie sie an bestimmten Stellen des X-Chromosoms vorliegen – so könnte sichergestellt werden, dass die Dosiskompensation nur bei X-Chromosomen aktiv wird“, sagt Becker.

Die Wissenschaftler nehmen an, dass lange RNAs auch bei anderen regulatorischen Komplexen eine wesentlich aktivere Rolle spielen als gedacht: „Bisher galten diese RNAs nur als Gerüst für die Bindung von Proteinen. Wir vermuten aber, dass sie durch Bindung die Aktivität der assoziierten Proteine beeinflussen. Für den DCC konnten wir das nun zeigen“, sagt Becker, der auf diesem Gebiet weiterforschen wird. „Jetzt wird es erst richtig spannend“. (Molecular Cell 2013) göd

Die Arbeiten wurden von der DFG durch den SFB Transregio 5 gefördert und von der EU im Rahmen des ERC Advanced Grants „Assembly and maintenance of a co-regulated chromosomal compartment“ (ACCOMPLI) unterstützt.

Publikation:
ATP-Dependent roX RNA Remodeling by the Helicase maleless Enables Specific Association of MSL Proteins
Sylvain Maenner, Marisa Müller, Jonathan Fröhlich, Diana Langer and Peter B. Becker
Molecular Cell 2013
http://dx.doi.org/10.1016/j.molcel.2013.06.011
Kommentar in der gleichen Ausgabe:
Noncoding roX RNA Remodeling Triggers Fly Dosage Compensation Complex Assembly.
Wutz A. Mol Cell. 2013 Jul 25;51(2):131-2. doi: 10.1016/j.molcel.2013.07.007.
PMID: 23870139 [PubMed – in process]
Kontakt:
Prof. Dr. Peter B. Becker
Adolf-Butenandt-Institut
Tel: +49-89-218075-427
Secretarial Assistant: Edith Müller
Tel: +49-89-218075-428
edith.mueller01@med.uni-muenchen.de

Media Contact

Luise Dirscherl idw

Weitere Informationen:

http://www.med.uni-muenchen.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Der Klang der idealen Beschichtung

Fraunhofer IWS transferiert mit »LAwave« lasergestützte Schallanalyse von Oberflächen in industrielle Praxis. Schallwellen können auf Oberflächen Eigenschaften verraten. Parameter wie Beschichtungsqualität oder Oberflächengüte von Bauteilen lassen sich mit Laser und…

Individuelle Silizium-Chips

… aus Sachsen zur Materialcharakterisierung für gedruckte Elektronik. Substrate für organische Feldeffekttransistoren (OFET) zur Entwicklung von High-Tech-Materialien. Wie leistungsfähig sind neue Materialien? Führt eine Änderung der Eigenschaften zu einer besseren…

Zusätzliche Belastung bei Knochenmarkkrebs

Wie sich Übergewicht und Bewegung auf die Knochengesundheit beim Multiplen Myelom auswirken. Die Deutsche Forschungsgemeinschaft (DFG) fördert ein Forschungsprojekt der Universitätsmedizin Würzburg zur Auswirkung von Fettleibigkeit und mechanischer Belastung auf…

Partner & Förderer